

universität freiburg

Probing new frontiers: Unraveling **Dark Matter** with novel collider signatures in Type I 2HDM+a

<u>Ilia Kalaitzidou</u> Spyros Argyropoulos Ulrich Haisch

March 6, 2024

Motivation

Open question: Dark Matter nature

- Initial simplified DM models: Add a singlet acting as mediator between the visible and dark sectors arXiv:1506.03116
- Problem: Unitarity may be violated: Interactions between DM mediator and SM fermions are not gauge invariant arXiv:1510.02110
- Solution: Extend the SM Higgs sector

Two Higgs Doublet Model with an additional pseudoscalar DM mediator 2HDM+a: simplest gauge-invariant and renormalisable extension of the simplified pseudoscalar DM model

→ New channels for particle interaction → More distinctive collider signatures

2HDM+a theory

- Two Higgs doublets H₁, H₂, one pseudoscalar singlet P
- Scalar potential: $V = V_H + V_{HP} + V_P$

• Masses: \mathbf{m}_{A} , \mathbf{m}_{H} , $\mathbf{m}_{H\pm}$, \mathbf{m}_{a} , \mathbf{m}_{χ} (DM mass)

Previous ATLAS and CMS searches: BSM 2HDM states degenerate in mass $m_A=m_H=m_{H\pm}$

Many signatures are not kinematically allowed with this restriction: $A \rightarrow Ha$, $A \rightarrow HZ$, $A \rightarrow H^+W^-$

Five Higgs bosons

Model Parameters

- Mixing angles:
 - $\alpha \rightarrow$ Mixing of CP-even states (H \Leftrightarrow h)
 - $\boldsymbol{\beta} \rightarrow \tan \beta \equiv \frac{v_2}{v_1}$
 - $\boldsymbol{\theta} \rightarrow \text{Mixing of CP-odd states} (A \Leftrightarrow a)$

• Couplings

	up-type	down- type	leptons	g _A ^u	g Ad
Туре І	H ₂	H_2	H_2	1/tanβ	-1/tanβ
Type II	H ₂	H1	H1	1/tanβ	tanβ

sinθ choice affects pseudoscalar branching ratios

Couplings in Type I in alignment limit $\cos(\beta - \alpha) = 0$

$$g_{Hf\bar{f}} = y_f \cot\beta \qquad g_{Af\bar{f}} = \eta_f y_f \cot\beta\cos\theta$$
$$g_{af\bar{f}} = \eta_f y_f \cot\beta\sin\theta$$

Previous searches Exclusion m_A-m_a plane

No mass hierarchy: m_A=m_H=m_{H±}

E_T^{miss}+h(bb̄) and E_T^{miss}+Z(ll̄) dominate the sensitivity

5

2HDM Typel

• Why Type I?

All previous LHC searches consider only Type II Yukawa sector

- Constraints from flavour physics on charged Higgs mass are very weak in Type I → allow lower H[±] masses
- → H[±] should be close to the mass of A or H: Allow smaller m_{H±} → Smaller allowed masses for A/H → Explore masses below the SM Higgs mass

A boson dominant decays

New channel

bb+E_T^{miss} signature

Study of bb+E_T^{miss} final state: Increased sensitivity due to resonant production, enhanced H→bb branching ratio for smaller m_H, not complicated final state

bb+E_T^{miss} signature Event reconstruction

Requirements

• 0 leptons

- leptons: $p_T > 7 \text{GeV}$, $|\eta| < 2.47(e) / 2.5(\mu)$
- Exactly 2 b-jets with m_{bb}>50GeV jets: anti-kT p_T > 20GeV, |η| < 2.5
- E_T^{miss} > 150GeV

Further cuts

- Less than 6 jets
- E_T^{miss} significance $(E_t^{miss}/\sqrt{\Sigma}p_T^{jets}) > 10$
- min $\Delta \phi(E_T^{miss}, jets) > \pi/10$
- $\Delta R(b_1, b_2) < 3.3$
- Ν_τ=0
- m_{top}^{near(far)}>180(200) GeV

Cuts similar to the ATLAS $A \rightarrow Z(vv)H(bb)$ analysis arXiv:2311.04033

- **a or Z**: Missing transverse momentum
- H candidate: 2 b-jets
- Transverse mass for A candidate: H+E_T^{miss}

$$m_T = \sqrt{m^2 + p_x^2 + p_y^2}$$

Calculate sensitivity with $m_{\mbox{\tiny H}}$

- Complementary exclusion for the phase space where $A \rightarrow Ha$ decay is not kinematically allowed
- Same cuts and reconstruction as $b\overline{b}+E_T^{miss}$

Calculate sensitivity with $m_T(A)$

bb+ll signature Previous analyses

 Previous A→ZH→IIbb analyses both in ATLAS and CMS (full Run-2) cover m_{bb} above the SM Higgs

bb+ll signature Event reconstruction

- Z: lepton-pair
- H candidate: 2 b-jets
- A candidate: H+Z

Cuts inspired from the ATLAS A→ZH→llbb analysis arXiv:2011.05639

 $g \mod$

g Q Q Q

H

Events

A

- One opposite sign same flavour lepton pair
- Exactly two b-jets
- Less than 6 jets
- 80<mz<100GeV
- p_T(l₁)>27GeV, p_T(l₂)>13GeV
- E_T^{miss} significance $(E_t^{miss}/\sqrt{\Sigma}p_T^{jets}) < 3.5$
- $\sqrt{\Sigma}p_T^2$ (leptons+jets)/m_{bbll} >0.4
- m_{bb} window: 0.85m_H -20 < m_{bb} < m_H+20

ZZ+E^{miss} signature

Cuts inspired from the ATLAS A→ZH→IIII+MET analysis arXiv:2401.04742

- Exactly four leptons
- |m_z-91.2| < 10 GeV
- p_⊤(l)>25GeV
- E_T^{miss} > 50 GeV
- m(4l) < 400 GeV

• Transverse mass for A candidate: m^{inv}(4I)+E_T^{miss}

Calculate sensitivity with m_T(A)

Exclusion

- Show four different benchmark points for different $\Delta m = m_A m_{H\pm}$ and sin θ
- Expand exclusion to masses below the mass of the SM Higgs boson
- Larger Δm allows the resonant production of H[±] through A \rightarrow H⁺W⁻

- Δρ violated: Constraints from electroweak precision observables
- BFBs hold: Scalar potential is bounded from below
- Γ_i/m_i<30%: Decay widths of scalars should remain small

Conclusion

2HDM+a for Typel is not yet explored → Leads to promising **new signatures**

Goal: New benchmarks of uncovered final states → New analyses with Run3 data

New decay channels: $A \rightarrow a H(bb), A \rightarrow Z H(aZ)$ $H \rightarrow a A(tt), H \rightarrow H^+ W_-$

 $b\overline{b}+E_T^{miss}$ and $l\overline{l}b\overline{b}$ expand exclusion to masses below the SM Higgs mass

Novel collider signatures in the type-I 2HDM+amodel

Spyros Argyropoulos^a Ulrich Haisch^b and Ilia Kalaitzidou^a

Thank you.

coming soon . ^a Physikalisches Institut, Universität Freiburg, Hermann-Herder Str. 3a, 79104 Freiburg, Germany Freiburg, Germany ^bMax Planck Institute for Physics. Föhringer Ring 6, 80805 München, Germany

Back-up slides

Benchmark scenarios

Study four benchmark points for different $\Delta m = m_A - m_{H\pm}$ and tan β

Black: Constraints from EW precision measurements and decay widths > 30%

Signatures with charged Higgs

 Allowing larger mass splitting between m_A and m_{H±} makes further new unexplored signal signatures kinematically possible such as A → H⁺W⁻

Signatures with charged Higgs The A \rightarrow H⁺W⁻ decay

No previous A → H⁺W⁻ analysis

- Only a small region (bottom left corner) is sensitive for the H[±]→W[±]H decay
- Larger region where the H[±]→tb decay is important
- Both of them give a final state not previously explored

 $m_A = m_{H^{\pm}} + 120 \text{ GeV}, m_a = 300 \text{ GeV}$ 700600 500 m_H [GeV] $\blacksquare H^+ \rightarrow HW^+$ 400 $\blacksquare H^+ \rightarrow tb$ 300 Constraints 200 100 300 400 500 600 700 800 900 m_A [GeV]

2HDM+a theory

- Two Higgs doublets H₁, H₂, one pseudoscalar singlet P
- Scalar potential $V = V_H + V_{HP} + V_P$

•
$$V_{H} = \mu_{1}H_{1}^{\dagger}H_{1} + \mu_{2}H_{2}^{\dagger}H_{2} + (\mu_{3}H_{1}^{\dagger}H_{2} + h.c.)$$

+ $\lambda_{1}(H_{1}^{\dagger}H_{1})^{2} + \lambda_{2}(H_{2}^{\dagger}H_{2})^{2}$
+ $\lambda_{3}(H_{1}^{\dagger}H_{1})(H_{2}^{\dagger}H_{2}) + \lambda_{4}(H_{1}^{\dagger}H_{2})(H_{2}^{\dagger}H_{1})$
+ $[\lambda_{5}(H_{1}^{\dagger}H_{2})^{2} + h.c.]$

• $V_{HP} = P\left(ib_{P}H_{1}^{\dagger}H_{2} + \text{h.c.}\right) + P^{2}\left(\lambda_{P1}H_{1}^{\dagger}H_{1} + \lambda_{P2}H_{2}^{\dagger}H_{2}\right)$

Five Higgs bosons

• $V_P = \frac{1}{2}m_P^2 P^2$

Model Parameters

- Mixing angles:
 - $\mathbf{a} \rightarrow \text{Mixing of CP-even states } (H \Leftrightarrow h)$
 - $\boldsymbol{\beta} \rightarrow \ \tan \beta \equiv \frac{v_2}{v_1}$
 - $\boldsymbol{\theta} \rightarrow \text{Mixing of CP-odd states} (A \Leftrightarrow a)$
 - Allowing mass splittings →
 Relatively small sinθ values are allowed
- $\sin\theta$ choice affects A branching ratio $m_H = m_a = 100 \text{ GeV}, m_{\Delta} - m_{H^{\pm}} = 50 \text{GeV}$ 0.8 0.6 А→На BR(A) A→HZ 0.4 A→ha 0.2 0.0 300 400 500 600 700 $\sin\theta = 0.2$ m_A [GeV] sinθ=0.35

Previous searches

tbt**b**

b

 \bar{b}

 H^+

Previous searches: No mass hierarchy! $m_A=m_H=m_{H\pm}$

g

لاووووه

g aladar

3

2HDM Typel

• Why Type I?

 We need tanβ ≥ 3 → Moderately fermiophobic (pseudo)scalars (~1/tanβ supressed) → The main BSM Higgs bosons decay modes differ significantly compared to Type II (~tanβ for TypeII)

bb+Er^{miss} signature H Branching Ratio

• The a mass choice affects the H branching ratios

- $H \rightarrow b\overline{b}$ is dominant for lower m_H
- $H \rightarrow aZ/aa$ start to dominate for $m_H > m_a + m_Z$

bb+E_T^{miss} signature Impact of Box Diagrams

Box diagrams become important for large mass difference between a and A (decay A \rightarrow h_{SM}a(xdxd))

- decay $a \rightarrow H(bb) A(xdxd)$, with ma=600GeV, mA=150GeV and mH=80GeV
- Visible impact of box diagrams

EW Phase Transition

 In SM smooth crossover (given the large Higgs mass) → Continuous transition from symmetric vacuum to EW vacuum

- In 2HDM first order EW phase transition → Abrupt transition from symmetric vacuum to EW vacuum
- Necessary condition for baryogenesis