

Search for $A \rightarrow ZH \rightarrow IIt\bar{t}$ with the **ATLAS detector**

Roman Küsters

Emmy

Motivation

A large matter-antimatter asymmetry is observed in the universe. For the generation of this asymmetry (baryogenesis) the Sakharov conditions need to be fulfilled: 1) C/CP violation, 2) baryon number violation, 3) interactions out of equilibrium. While SM fulfils these conditions, it cannot reproduce the observed asymmetry with m_h =125 GeV.

\Rightarrow baryogenesis requires new physics

One of the simplest viable models for baryogenesis is the 2 Higgs Doublet Model (2HDM). In these models baryogenesis can occur through a **1st order phase transition if there is** a large splitting between the scalar masses. A previous search was done in the IIbb final state,

Signature of 2HDM's

Due to the second Higgs doublet in 2HDM's 5 physical spin 0 states occur: two neutral CP even (h, H), two charged (H^+) and one neutral CP odd (A)state.

We search for $A \rightarrow ZH \rightarrow IIt\bar{t}$ because : • H \rightarrow tt is dominant for m_H>350

Goals:

- Search for heavy scalars with large mass splitting
- Extend the mass region to $m_H \geq 350 GeV$

Search for: semi-leptonic top decays (high BR & low background) and Z decays to leptons.

Event Selection and Backgrounds

<u>Signature of process</u>

- exactly 3 leptons (at least 1 Opposite Sign Same Flavour pair)
- at least 4 jets
- at least 2 b-jets

Dominant Backgrounds

top-pair + fake lepton

Optimisation

Simple cut based analysis and multi-variate analysis are explored

Exploit different variables to discriminate signal from background

optimisations

ATLAS Simulation Work in Progress

*t*tV
*t*t
*t*t
*t*t

 $\sqrt{s} = 13 \text{ TeV}$

0.010

0.004

0.002

Fitting

If signal is present, a resonant peak in $m_H \& m_A$ distribution is expected.

Use binned profile likelihood fit to data to obtain upper limits on cross-section for different signal hypotheses.

Two strategies under study:

• low rate, but cross section >200 higher than other bkgs • $m_{ii} \neq m_W, m_{II} \neq m_Z$

Different background composition in different final states.

This can be exploited to constrain tt in the fit

Top candidate reconstruction: • t_{lep}: W_{lep} with closest b-jet

• irreducible • softer leptons, different topology μμμ ttbar Others ttV Others tWZ

tτΖ

 W_{lep}

- cut on p_T of 3 leptons
- m_z window cut
- lepton identification/isolation cut
- $t\bar{t}$ reconstruction
- Binning in m_H

- 1) fitting m_A in bins of m_H
- 2) fitting m_A-m_H

Preliminary results indicate that the expected sensitivity will extend from:

• 550 $\leq m_A \leq$ 900 GeV for $m_H \sim 2m_{top}$ • $350 \leq m_H \leq 550 \text{ GeV}$ for $m_A \sim 900 \text{ GeV}$

This will allow to probe a parameter region that has so far not been explored at the LHC.

Literature: arXiv:2011.05639 arXiv:1807.07734