Search for $A \rightarrow ZH \rightarrow \ell\ell t\bar{t}$ at $\sqrt{s} = 13 TeV$ with the ATLAS detector

Roman Küsters Dr. Spyros Argyropoulos, Dr. Tetiana Moskalets

DPG Conference 2022

5 UNI FREIBURG

Motivation

Observe huge matter-antimatter asymmetry in universe

Where is matter-antimatter asymmetry originating from?

conditions for Baryogenesis formulated in 1967 by Andrei Sakharov Sakharov Conditions

- 1. C/CP violation
- 2. baryon number violation
- 3. interactions out of equilibrium

Standard Model does not fulfil all of these conditions

⇒Baryogenesis requires new physics!

2

2HDM as a solution to Baryogenesis

one of the simplest extensions of standard model: addition of a second Higgs doublet \Rightarrow 8 fields, BUT 3 fields are absorbed by EWSB for electroweak interactions

 \Rightarrow in total 5 physical Higgs bosons:

- 2 neutral CP even bosons (H, h)
- 1 neutral CP odd boson (A)
- 2 charged bosons (H[±])

2HDM can fulfil Sakharov conditions!!!

Aim of this Analysis: Search for heavy scalars with large mass splitting \Rightarrow extend mass region to m_H > 350 GeV

Branching Ratios of A & H:

 $A \rightarrow ZH$ dominant for large mass splitting (m_A > m_H +vev)

Selection & Reconstruction

Z Boson: decay to 2 leptons of **opposite charge**, **same flavour** 1 top: hadronic decay->1 **b-jet** + 2 **jets** 1 top: leptonic decay->1 **lepton** + 1 **b-jet**

 $\Rightarrow \geq 4$ jets, exactly 2 b-jets, exactly 3 leptons

Z-Boson reconstruction:

- oppositely charged leptons
- same flavour leptons
- if more than 1 possible pair(in *eee/μμμ*):
 pair with mass closest to m_z
- lepton n
- b-jet with min dR to this lepton

$t\bar{t}$ reconstruction:

leptonic top	hadronic top
$t \rightarrow l + \nu + b$	$t \rightarrow q + q' + b$
not from Z	 2 light jets with mass closest to m_v

• b-jet not from leptonic top

Main Backgrounds

tt+fake lepton

- irreducible
- softer leptons, different topology
- No resonance in m_{VH} expected

- low rate, but cross section >200 higher than other bkgs
- $m_{jj} \neq m_W, m_{II} \neq m_Z$
- fake lepton: something wrongly reconstructed as lepton (Pile Up,...)
- No resonance in m_z expected

single top + Vector boson

- •third dominant background
- no resonance expected in mVH

Event Selection

	Signal Region	Control Region
Trigger	single-lepton-trigger	
N _{b-jets}	=	2
Njets	\geq	4
N _{Leptons}	=	3
epton optimisations	at least 1 opposite sign same flavour lepton pair	
b-tag Working Point	77% btag working point	
Jet optimisations	Muon in jet correction	
(H) in ZH restframe	value is m _A /m _H dependent	
p _T 1/ 2/ 3	27/13/13 [GeV]	
mz window cut	m _{ll} - m _z < 10 GeV	10 GeV < m _⊪ - m _z < 20 GeV ◄

optimised cuts

CR rich in tt events

Fake estimation

use Control Region to estimate ttbar+fake in signal region

- B/C/D are regions with dominantly fake processes
- assume SF1 \approx SF2 $\Rightarrow N_A \approx N_B \cdot \frac{N_C}{N_D}$

 $|m_{||}-m_{z}| < 10$

 $|m_{||}-m_{z}| > 10$

Rescaling of m_H

if signal is present, expect resonance in m_A, m_H & m_A - m_H further information: arXiv:1807.07734

Significances

significance calculated for variable m_A - m_H
 Asymptotic log-likelihood ratio formula

$$S = \sqrt{\sum_{i=0}^{n=N_{bins}} \left(2\left[(s_i + b_i) \ln(1 + \frac{s_i}{b_i}) - s_i \right] \right)^2}$$

• significance ratio = $\frac{\text{significance after cut}}{\text{significance before cut}}$

with optimised cuts significance increases up to 45%
 especially for high m_A - m_H splitting significance improved >= 20%

Future Steps & Outlook

Fitting:

- binned profile likelihood fit to data
- obtain upper limits on cross section for different signal hypotheses

Aim:

test if signal is present, otherwise:

▶ put upper limits on $\sigma(A \rightarrow ZH \rightarrow \ell \ell t \bar{t})$

probe phase space so far unexplored with the LHC — for a bridge between Particle Physics and Cosmology —

Systematic uncertainties

include systematic uncertainties arising from

- detector
- theoretical uncertainties

impact of uncertainties is under study

Back Up

Background composition

tWZ

