Search for $A \rightarrow Z H \rightarrow \ell \ell t \bar{t}$ at $\sqrt{s}=13 \mathrm{TeV}$ with the ATLAS detector

DPG Conference 2022

Roman Küsters

Dr. Spyros Argyropoulos, Dr. Tetiana Moskalets

Motivation

Observe huge matter-antimatter asymmetry in universe
Where is matter-antimatter asymmetry originating from?

hard-science
conditions for Baryogenesis formulated in 1967 by Andrei Sakharov

- Sakharov Conditions

1. C / CP violation
2. baryon number violation
3. interactions out of equilibrium

Standard Model does not fulfil all of these conditions

\Rightarrow Baryogenesis requires new physics!

2HDM as a solution to Baryogenesis

$$
A \rightarrow Z H \rightarrow \ell \ell b \bar{b}
$$

one of the simplest extensions of standard model: addition of a second Higgs doublet
$\Rightarrow 8$ fields, BUT 3 fields are absorbed by EWSB for electroweak interactions
\Rightarrow in total 5 physical Higgs bosons:

- 2 neutral CP even bosons (H, h)
- 1 neutral CP odd boson (A)
- 2 charged bosons $\left(\mathrm{H}^{ \pm}\right)$

exclusion only for $\mathrm{m}_{\mathrm{H}}<350 \mathrm{GeV}$
2HDM can fulfil Sakharov conditions!!!

Aim of this Analysis:

- Search for heavy scalars with large mass splitting
- extend mass region to $\mathrm{m}_{\mathrm{H}}>350 \mathrm{GeV}$

Branching Ratios of A \& H:

$A \rightarrow$ ZH dominant for large mass splitting ($\mathrm{m}_{\mathrm{A}}>\mathrm{m}_{\mathrm{H}}+\mathrm{vev}$)

Selection \& Reconstruction

Z Boson: decay to 2 leptons of opposite charge, same flavour 1 top: hadronic decay->1 b-jet + 2 jets
1 top: leptonic decay->1 lepton +1 b-jet
$\Rightarrow \geq 4$ jets, exactly 2 b-jets, exactly 3 leptons

Z-Boson reconstruction:

- oppositely charged leptons
- same flavour leptons
- if more than 1 possible pair(in $e e e / \mu \mu \mu$): pair with mass closest to m_{z}

A

$t \bar{t}$ reconstruction:

- lepton not from Z
- b-jet with min dR to this lepton
- 2 light jets with mass closest to m_{w}
- b-jet not from leptonic top

Main Backgrounds

single top + Vector boson

-third dominant background

- no resonance expected in m_{vH}

Event Selection

Fake estimation

use Control Region to estimate ttbar+fake in signal region

- $B / C / D$ are regions with dominantly fake processes
- assume SF1 \approx SF2
$\Rightarrow N_{A} \approx N_{B} \cdot \frac{N_{C}}{N_{D}}$

Opposite Sign, Same Flavour for Z candidate

Same Sign, Same Flavour for Z candidate

B
FakeRegion

D
FakeRegion

Rescaling of m_{H}

before mH window cut

apply window cut on m_{H}
$\left|m_{\text {reco }}-\mathrm{m}_{\mathrm{H} \text { hypo }}\right|< \begin{cases}1.5 \cdot \sigma\left(\mathrm{~m}_{\text {reco }}\right) & \text { if } \mathrm{m}_{\mathrm{H}} \text { hypo }<500 \mathrm{GeV} \\ 2.0 \cdot \sigma\left(\mathrm{~m}_{\text {reco }}\right) & \text { if } \mathrm{m}_{\mathrm{H} \text { hypo }} \geq 500 \mathrm{GeV}\end{cases}$
if signal is present, expect resonance in $m_{A}, m_{H} \& m_{A}-m_{H}$ further information: arXiv:1807.07734
-testing different mass hypotheses for mH

- rescaling of m_{H}, since m_{H} hypothesis is known

rescale Lorentz vector of $\mathrm{H}_{\text {recon }}$ to match m_{H} hypothesis

$$
\mathrm{p}\left(\overline{\mathrm{t}}_{1,2}\right) \rightarrow \mathrm{p}\left(\mathrm{t} \overline{\mathrm{t}}_{1,2}\right) \cdot \mathrm{m}_{\mathrm{H} \text { hypo }} / \mathrm{mt} \overline{\mathrm{t}}
$$

after mH rescaling

Significances

- with optimised cuts significance increases up to 45%
- significance calculated for variable $m_{A}-m_{H}$ - Asymptotic log-likelihood ratio formula
$\Rightarrow S=\sqrt{\sum_{i=0}^{n=N_{\text {bins }}}\left(2\left[\left(s_{i}+b_{i}\right) \ln \left(1+\frac{s_{i}}{b_{i}}\right)-s_{i}\right]\right)^{2}}$
- significance ratio $=\frac{\text { significance after cut }}{\text { significance before cut }}$
- especially for high $m_{A}-m_{H}$ splitting significance improved $>=20 \%$

Future Steps \& Outlook

Fitting:

- binned profile likelihood fit to data
- obtain upper limits on cross section for different signal hypotheses

Systematic uncertainties

include systematic uncertainties arising from

- detector
- theoretical uncertainties
impact of uncertainties is under study

probe phase space so far unexplored with the LHC for a bridge between Particle Physics and Cosmology

Back Up

Background composition

ATLAS Simulation Work in Progress

tWZ

