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Large Hadron Collider at CERN

• Largest and most 
powerful particle 
accelerator in the world 

• Collisions bring huge 
amounts of energy in a 
very tiny amount of 
space 
• E=mc2  
• produces new 

particles 
• Try to understand matter 

at smallest scales 
• Discovery of the Higgs 

boson in 2012
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Success of the LHC

• Searches for New Physics are relying more and more upon 
high-precision comparisons between theory and data 
• Large data samples, methods to reduce systematics 
• High precision computations 

• We are scrutinising the Standard Model at higher and higher 
precision and in smaller and smaller corners of the phase-
space 
• The ultimate stress-test for our predictions
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Excellent agreement

• Excellent 
agreement 
between 
computed and 
measured cross 
sections 

• for all accessible 
processes 

• over many 
orders of 
magnitude
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Bridging the gap
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Fixed Order Corrections 
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Detector simulation 
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Reconstruction 

B-tagging efficiency 
...

MC event generators



.JOJNJIÚKE����NN

LOGOTYPFÄRGER
Lunds universitets logotyp får bara förekomma i följande 
färgvarianter: brons/blå, svart eller vit (negativ). Färgvariant 
brons/blå är den rekommenderade och ska användas överallt 
där det är möjligt. 
 
LOGOTYPSTORLEK
Lunds universitets logotyp får inte göras för liten. Detta för 
att säkerställa läsbarhet och tydlighet. Logotypen (oavsett 
version) får därför inte göras mindre än att sigillet i logotypen 
har en höjd på minst 10 mm (se illustration ovan). 

3FLPNNFOEFSBE�GÊSHWBSJBOU

4WBSU 7JU�OFHBUJW

.JOJNJIÚKE����NN

LUNDS UNIVERSITET | GRAFISK MANUAL | BASREGLER | LOGOTYPFÄRGER OCH LOGOTYPSTORLEK  10

.JOJNJIÚKE����NN

.JOJNJIÚKE����NN

An LHC collision: 
phenomenological picture
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Figure 1: Schematic of the structure of a pp ! tt event, as modelled by PYTHIA. To
keep the layout relatively clean, a few minor simplifications have been made: 1) shower
branchings and final-state hadrons are slightly less numerous than in real PYTHIA events,
2) recoil effects are not depicted accurately, 3) weak decays of light-flavour hadrons are
not included (thus, e.g. a K0

S meson would be depicted as stable in this figure), and 4)
incoming momenta are depicted as crossed (p! �p). The latter means that the beam
remnants and the pre- and post-branching incoming lines for ISR branchings should be
interpreted with “reversed” momentum, directed outwards towards the periphery of the
figure; this avoids beam remnants and outgoing ISR emissions having to criss-cross the
central part of the diagram.
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Figure taken from Bierlich et al., 2022 (Pythia8.3 manual)



This talk

• Is not about the greatness of these simulation codes 
• Is not a grant overview of their features 

• It is about a little thing that soaked up an enormous amount of 
my time over last 5 years or so 

• …negatively weighted events…
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Matching hard ME with PS

• Hard matrix elements: 
Monte-Carlo integration 
over phase-space 
(MadGraph5_aMC@NLO) 

• Parton shower: Markov 
chain evolution 
(Pythia8) 

• MC@NLO (or POWHEG)
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Beyond lowest order in 
perturbation theory, the 
hard matrix elements 
are no longer positive 
definite in all phase-
space points. 
MC@NLO predictions 
have "negatively 
weighted" events



The cost of negative weights
• Main disadvantage of MC@NLO is the (large) fraction of negatively 

weighted events 
• IR-safe observables will be positive in all bins 

(up to statistical fluctuations) 
• Efficiency and relative cost: 

• Not only is there a cancelation 
between negative and positive 
events, the remaining distributions 
still have the statistical uncertainties 
of the original (larger) event files
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e�ciencies relevant to them; for example, it is usually the case that phase-space integration

converges slightly faster in the case of a positive-definite integrand than in the case of an

integrand whose sign can change; similar considerations are valid e.g. for the unweighting

e�ciency. However, for all practical purposes such correlations can be neglected: by far,

the most significant impact of "(f) being smaller than one is that it implies that, in order

to obtain the same statistical accuracy at the level of physical observables as the one of a

positive-definite simulation, a number of events must be generated which is larger than in

the latter case. In order to quantify this statement, let us denote by:

N , N+ = (1 � f)N , N� = fN =) N = N+ + N� , (1.2)

the total number of events, the number of events with positive weights, and the number

of events with negative weights, respectively. Furthermore, we assume such events to be

unweighted1: in other words, their weights are equal to ±!, with ! > 0 a constant. The

resulting cross section and its associated error will thus be:

� = !

✓
N+ �N� ±

q
N+ + N� + 2C±

p
N+

p
N�

◆

= !

✓
"(f)N ±

q
1 + C±

p
1 � "(f)2

p

N

◆
, (1.3)

where by C± we have denoted the non-negative correlation between positive- and negative-

weight events (this number is typically neglected). In the context of a positive-definite

simulation, where M unweighted events are generated with weights all equal to !
0
> 0, the

analogue of eq. (1.3) reads:

� = !
0
⇣
M ±

p

M

⌘
. (1.4)

By imposing the cross sections in eqs. (1.3) and (1.4) to have the same relative error we

obtain:

N = c(f)M , (1.5)

where

c(f) =
1 + C±

p
1 � "(f)2

"(f)2
. (1.6)

The fact that N � M (with N = M if and only if f = 0) formalises what was stated before

eq. (1.2): a simulation that features events of either sign can attain the same statistical

accuracy as one that is positive definite only by generating a number of events which is

larger by a factor c(f) w.r.t. that of the latter. For this reason, we call c(f) the relative

cost of the simulation; we plot this quantity as a function of f in fig. 1, for C± = 0, 0.5, 1.

The discussion thus far has been rather schematic. For example, we have implicitly

assumed f to be independent of the kinematics, which is never the case. More correctly,

one would need to use eqs. (1.3) and (1.4) locally in the phase space, thus defining a

1Discussing e�ciencies becomes significantly more complicated in the case of weighted events. Of course,

this is not the (main) reason why unweighted events must be preferred to weighted events whenever possible:

rather, they constitute a much more realistic representation of actual physical events, and their samples are

much smaller, for any given accuracy target, than those relevant to weighted events.

– 2 –
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1 Introduction

It is inconceivable that modern experimental high-energy particle physics be done without

the massive use of event generators, which are also enjoying an increasing number of ap-

plications in theoretical phenomenology. This has stimulated a vigorous research activity

in the past two decades, the upshot of which is that event generators, while maintaining

their traditional flexibility, have significantly increased their predictive power (and its most

important spino↵, the reduction of systematics), through matching and merging with per-

turbative matrix-element computations. Apart from a few selected cases, matching and

merging are either carried out at the tree level or at the next-to-leading order (NLO). In this

work, we shall consider only the latter simulations, that are more accurate than the former,

but require more involved computations (which nowadays can fortunately be automated).

On top of that, one must bear in mind that NLO cross sections are not positive-definite

locally in the phase space. This implies that some of the hard events that will eventually

be showered have negative weights. It is convenient to introduce an e�ciency associated

with the fraction of negative weights; denoting the latter by f , such an e�ciency is defined

as follows:

"(f) = 1 � 2f , 0  f < 0.5 =) 0 < "(f)  1 . (1.1)

This e�ciency stems from matrix-element computations (see e.g. eq. (4.33) of ref. [1]), but

it a↵ects the overall performance of the latter only insofar that it is correlated with other

– 1 –
1.5

2

3

5

7

15

20

30

50

70

1

10

0 5 10 15 20 25 30 35 40 45

R
el

at
iv

e
co

st
,
c
(f

)

Fraction of negative weights, f [%]

Correlation
C± = 0%

C± = 50%

C± = 100%

1

Figure 1: Relative cost as a function of the fraction of negative weights, eq. (1.6), for

three di↵erent values of the correlation parameter C±.

local relative cost, and subsequently construct the global relative cost as the weighted (by

number of events) average of the local ones. In practice, eq. (1.6), with f the overall fraction

of negative-weight events, does characterise well enough the behaviour of simulations with

events of either sign, and we shall often use it in the following.

The problem with c(f) > 1 for any f > 0 is not statistics per se, but the fact that it

generally implies additional financial costs: longer running times, hence larger power con-

sumption (events with negative weights contribute to climate change!), and bigger storage

space, to name just the most important ones. Denoting by p (p0) the overall price tag for

the generation, full simulation, analysis, and storage of an individual event resulting from

a positive-definite (non-positive-definite) simulation, the additional costs alluded to before

are:

Np
0
�Mp = M

⇥
c(f)p0 � p

⇤
. (1.7)

With all other things being equal (and chiefly among them, the control of the theoretical

systematics), it is therefore advantageous to make f as small as possible, so as to minimise

the additional costs2 of eq. (1.7). This is the goal of the present work, in the context of

the MC@NLO matching formalism [1].

Before proceeding, we remind the reader that currently the vast majority of theoretical

studies, and essentially all of the NLO+parton shower simulations performed by experi-

mental collaborations, are based on either the MC@NLO or the POWHEG [2] methods,

and on their closely-related variants [3, 4]; alternative approaches (see e.g. refs. [5–10]) are

2Note that p
0 �p can have either sign, although when NLO and LO calculations are taken as examples of

non-positive- and positive-definite simulations, respectively, most likely p
0
> p. In any case, in the context

of a complete experimental analysis the contribution to the cost due to the generation phase alone is minor,

and thus p
0 ' p.

– 3 –

RF et al. 2002.12716 [hep-ph]



MC@NLO anatomy

• Generating functional for MC@NLO 
 
 
 
 
 
 
 
with 
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In sect. 5 we present sample hadroproduction MC@NLO-� results, which we systemat-

ically compare with their MC@NLO counterparts. We draw our conclusions in sect. 6.

Finally, some technical information on the Pythia8 Sudakov form factors are collected in

appendix A.

2 Anatomy of negative weights in MC@NLO

We start by pointing out that in MC@NLO the exact amount of negative-weight events and

their distribution in the phase space depend on several elements. Among these, the most

important are the following: the parton shower MC one matches to, and in particular its

shower variables; the technique, which is typically a subtraction procedure, used to com-

pute the underlying NLO cross section; and the choice of the phase-space parametrisation

employed in the latter computation. Therefore, in a bottom-up approach to the reduction

of negative weights, one would construct the shower and the short-distance computations

with the specific goal of minimising f . This is a potentially very interesting strategy,

which however appears to be quite complicated; we shall not pursue it here. Rather, we

shall follow a top-down approach, where both the shower and the NLO calculations are

considered as given, and it is the matching between them which is responsible for the min-

imisation of f . This can be done thanks to the fact that, in spite of their specific features

mentioned above, negative weights possess universal characteristics which one can exploit

to reduce their number. In order to discuss such universal characteristics, we now sketch

out the basic MC@NLO formulae, simplifying them as much as possible, lest the details

obscure the basic ideas. If the reader wants to be definite, explicit expressions based on

FKS subtraction [14, 15] can be found e.g. in refs. [16–18] for the MadGraph5 aMC@NLO

implementation (MG5 aMC henceforth).

The key simplification from a notational viewpoint stems from one of the basic features

of the FKS subtraction and of the MC@NLO implementations based on it. Namely, for

any given real-emission process the phase space is partitioned in an e↵ective manner by

means of the S functions, so that one ultimately deals with a linear combination of short-

distance cross sections which have, at most, one soft and one collinear singularity. Such a

partition singles out two partons, called the FKS parton and its sister, with which the soft

and collinear singularities are associated. We shall thus work by using the rule:

R.1: The following formulae assume that the real-emission process, the FKS parton (la-

belled by i), and the sister of the latter (labelled by j) are given and fixed. In order

to obtain the physical cross sections, one must sum over these quantities.

Bearing the above condition in mind, the MC@NLO generating functional is written as

follows6:

FMC@NLO = FMC

⇣
K

(H)

⌘
d�

(H) + FMC

⇣
K

(S)

⌘
d�

(S)
, (2.1)

6As an example of the simplifications induced by rule R.1, the reader is encouraged to compare eq. (2.1)

with eq. (2.121) of ref. [17].

– 5 –

where FMC is the generating functional of the MC one matches to. By K
(H) and K

(S) we

have denoted H- and S-event kinematic configurations, respectively. For example, if Born-

level processes for the cross section of interest feature n final-state particles, K(H) and K
(S)

correspond to 2 ! n + 1 and 2 ! n configurations, respectively7. The short-distance cross

sections on the r.h.s. of eq. (2.1) are:

d�
(H) = d�

(NLO,E)
� d�

(MC)
, (2.2)

d�
(S) = d�

(MC) +
X

↵=S,C,SC

d�
(NLO,↵)

. (2.3)

Here, we have denoted by d�
(MC) the MC counterterms; the other contributions are identical

to those that enter an NLO fixed-order cross section:

d�
(NLO)

dK
= �

⇣
K �K

(H)

⌘
d�

(NLO,E) + �

⇣
K �K

(S)

⌘ X

↵=S,C,SC

d�
(NLO,↵)

. (2.4)

Thus, d�(NLO,E) is the real-emission contribution, while d�
(NLO,↵), ↵ = S,C, SC collect all

of the other terms (the Born, and contributions of virtual, soft, collinear, and soft-collinear

origin; in a non-FKS language, the latter are therefore the integrated and unintegrated

fixed-order counterterms). We point out that the cross sections on the r.h.s. of eqs. (2.2)

and (2.3) have support in an (n + 1)-body phase space. We write the latter as follows8:

d�n+1 = �(n+1) (�n+1) d�n+1 , (2.5)

where �n+1 denotes the set of the chosen 3n� 1 integration variables, whose nature need

not be specified here, except for the fact that its has the following general form:

�n+1 = �n

[
�r , (2.6)

�r =
�
⇠, y,'

 
. (2.7)

By �n we have denoted 3n� 4 integration variables that define n-body (i.e. Born-level)

configurations, and by �r the variables that parametrise the extra radiation that occurs

at the real-emission level. In an FKS framework (where one works in the c.m. frame of

the incoming partons), ⇠ is the rescaled FKS-parton energy, and y the cosine of the angle

between the FKS parton and its sister; ' is an azimuthal angle. Thus, ⇠ ! 0 and y ! 1

correspond to the soft and collinear limits, respectively. One can always construct the

phase spaces so that (see e.g. ref. [16]):

K
(S) = K

(S)(�n) , K
(H) = K

(H)(�n+1) ⌘ K
(H)(�n, ⇠, y,') , (2.8)

and

K
(S)(�n) = K

(H)(�n, 0, y,') = K
(H)(�n, ⇠, 1,') . (2.9)

7In order to simplify the notation, we assume here that all of the particles relevant to our processes are

strongly interacting. It is easy to include a posteriori extra particles which are not strongly interacting.
8Throughout this paper, we understand the integration over Bjorken x’s and the definition of the inte-

gration variables associated with them.
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real emission

Born, virtual, soft/collinear

H-events:

S-events:

MC (Shower) functional, starting 
from (n+1)-body kinematics

MC (Shower) functional, starting 
from n-body kinematics

shower counter terms



MC@NLO 
origins of negative weights

• Three sources of negative weights (with some overlap in the 
first two)

12

Equation (2.9) gives an unambiguous meaning to the connection between a real-emission

configuration and its underlying Born-level configuration. Furthermore, eqs. (2.5)–(2.9)

imply:

d�n+1 = J(�n,�r) �(n) (�n) d�nd�r , (2.10)

where J is a factor, whose explicit form is not relevant here, of Jacobian origin. Finally,

we define the pull:

P (K(H)) ⌘ P (�n, ⇠, y,') , (2.11)

as a variable that measures the distance (in phase space) between a real-emission con-

figuration and its underlying Born-level configuration. Therefore, the pull must be such

that:

lim
⇠!0

P (K(H)) = lim
y!1

P (K(H)) = 0 . (2.12)

For example, in Drell-Yan production P can be identified with the transverse momentum

of the lepton pair. We note that, for any given process, there is ample freedom to define

the pull. However, for the sake of the present discussion its precise definition is irrelevant;

what matters is that, by assuming that P has canonical dimensions equal to one (which

is not restrictive), and by denoting by MH the typical hard scale of the process, owing to

eq. (2.12) the regions:

P (K(H)) ⌧ MH , (2.13)

P (K(H)) ⇠ MH

[
P (K(H)) > MH , (2.14)

correspond to K
(H) being a soft- and/or collinear-emission configuration, and an intermediate-

or hard-emission configuration, respectively.

We classify negative-weight events in MC@NLO as follows:

N.1 H events with P (K(H)) ⌧ MH ;

N.2 H events with P (K(H)) ⇠ MH ;

N.3 S events.

Events of both classes N.1 and N.2 are due to the fact that the MC counterterms might

overestimate the real-emission cross section, and thus the linear combination in eq. (2.2)

is negative. N.1 events will be cancelled after showering (i.e. at the level of physical cross

sections) by S events; being in an MC-dominated region and thanks to the fact that the

number of S events is generally much larger than that of H events, such a cancellation

occurs with high e�ciency9. By far and large, this also implies that they a↵ect very

mildly the shape of kinematical distributions10, their main impact being on the absolute

normalisation (we remind the reader that the MC@NLO and fixed-order NLO total cross

sections, before acceptance cuts, are identical).

9The presence of events of class N.3 just lowers this e�ciency, but does not hamper the cancellation.
10As for all H events in MC-dominated regions.
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Bearing the above condition in mind, the MC@NLO generating functional is written as

follows6:

FMC@NLO = FMC

⇣
K

(H)

⌘
d�

(H) + FMC

⇣
K

(S)

⌘
d�

(S)
, (2.1)

6As an example of the simplifications induced by rule R.1, the reader is encouraged to compare eq. (2.1)

with eq. (2.121) of ref. [17].
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where FMC is the generating functional of the MC one matches to. By K
(H) and K

(S) we

have denoted H- and S-event kinematic configurations, respectively. For example, if Born-

level processes for the cross section of interest feature n final-state particles, K(H) and K
(S)

correspond to 2 ! n + 1 and 2 ! n configurations, respectively7. The short-distance cross

sections on the r.h.s. of eq. (2.1) are:

d�
(H) = d�

(NLO,E)
� d�

(MC)
, (2.2)

d�
(S) = d�

(MC) +
X

↵=S,C,SC

d�
(NLO,↵)

. (2.3)

Here, we have denoted by d�
(MC) the MC counterterms; the other contributions are identical

to those that enter an NLO fixed-order cross section:

d�
(NLO)

dK
= �

⇣
K �K

(H)

⌘
d�

(NLO,E) + �

⇣
K �K

(S)

⌘ X

↵=S,C,SC

d�
(NLO,↵)

. (2.4)

Thus, d�(NLO,E) is the real-emission contribution, while d�
(NLO,↵), ↵ = S,C, SC collect all

of the other terms (the Born, and contributions of virtual, soft, collinear, and soft-collinear

origin; in a non-FKS language, the latter are therefore the integrated and unintegrated

fixed-order counterterms). We point out that the cross sections on the r.h.s. of eqs. (2.2)

and (2.3) have support in an (n + 1)-body phase space. We write the latter as follows8:

d�n+1 = �(n+1) (�n+1) d�n+1 , (2.5)

where �n+1 denotes the set of the chosen 3n� 1 integration variables, whose nature need

not be specified here, except for the fact that its has the following general form:

�n+1 = �n

[
�r , (2.6)

�r =
�
⇠, y,'

 
. (2.7)

By �n we have denoted 3n� 4 integration variables that define n-body (i.e. Born-level)

configurations, and by �r the variables that parametrise the extra radiation that occurs

at the real-emission level. In an FKS framework (where one works in the c.m. frame of

the incoming partons), ⇠ is the rescaled FKS-parton energy, and y the cosine of the angle

between the FKS parton and its sister; ' is an azimuthal angle. Thus, ⇠ ! 0 and y ! 1

correspond to the soft and collinear limits, respectively. One can always construct the

phase spaces so that (see e.g. ref. [16]):

K
(S) = K

(S)(�n) , K
(H) = K

(H)(�n+1) ⌘ K
(H)(�n, ⇠, y,') , (2.8)

and

K
(S)(�n) = K

(H)(�n, 0, y,') = K
(H)(�n, ⇠, 1,') . (2.9)

7In order to simplify the notation, we assume here that all of the particles relevant to our processes are

strongly interacting. It is easy to include a posteriori extra particles which are not strongly interacting.
8Throughout this paper, we understand the integration over Bjorken x’s and the definition of the inte-

gration variables associated with them.
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Shower counter terms overestimate 
the real-emission corrections

n-body kinematics, but support in 
n+1-body phase space



Folding



S-events’s support in 
n+1-body phase space

• Monte-Carlo integration: 

• generate a random phase-space point in  

• for a given , generate a random point in  

• Since  and  are non-positive definite, negative 
events arise

ΦB

ΦB Φr

K(MC) α(NLO)
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Folding

• Folding: for every  phase-space 
point, throw multiple  points 

• This smoothens the  
contribution, reducing the number 
of negative weights 

•  contains 3 integration variables 

• Developed in the context of the  
POWHEG BOX generator 
P. Nason, arXiv:0709.2085 

• Reduction significant, but at a 
considerable computational cost

ΦB
Φr

K(MC)

Φr
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step-0 (s) step-1 (s) step-2 (s) negative
(grid setup) (integration) (generation) S weights

pp ! e+e�

default 1 14 147 7.1%
2⇥ 2⇥ 1 folding 1 33 258 2.1%
4⇥ 4⇥ 1 folding 1 114 781 1.8%
Born spreading 113 30 189 2.0%

pp ! H

default 1 121 187 10.6%
2⇥ 2⇥ 1 folding 1 115 399 2.7%
4⇥ 4⇥ 1 folding 1 228 1190 0.6%
Born spreading 82 122 203 1.1%

pp ! tt̄

default 2 132 455 8.6%
2⇥ 2⇥ 1 folding 2 262 1005 2.2%
4⇥ 4⇥ 1 folding 2 1092 3189 1.2%
Born spreading 199 137 448 2.1%

pp ! W+tt̄

default 5 346 1511 4.2%
2⇥ 2⇥ 1 folding 2 661 2938 2.2%
4⇥ 4⇥ 1 folding 2 2605 10020 1.7%
Born spreading 202 741 2138 2.6%

pp ! W+j

default 10 604 2013 24.2%
2⇥ 2⇥ 1 folding 10 1265 5160 13.2%
4⇥ 4⇥ 1 folding 7 2803 16020 9.0%
Born spreading 355 645 2226 18.8%

pp ! Hbb̄

default 77 1311 19440 27.3%
2⇥ 2⇥ 1 folding 39 4320 16380 22.4%
4⇥ 4⇥ 1 folding 48 17220 34260 20.9%
Born spreading 578 1263 20760 24.7%

Table 1. Runtimes and fraction of negative-weight S events for various LHC processes with default MG5 aMC code, two folding
setups, and Born spreading.

for negative-weight reduction, and runtimes are only mod-
erately increased at this level3. Being the fraction of neg-
ative weights still considerably large, the actual benefits
of folding with respect to Born spreading have to be care-
fully assessed taking into account a realistic number of

3 Notably, step-2 in pp ! Hbb̄ with 2⇥ 2⇥ 1 folding is even
faster than the default: most of the integration time in this case
is spent in the evaluation of the virtual contribution, which is
not a↵ected by folding. Hence the enhanced stability of the in-
tegrand achieved with folding is su�cient to guarantee smaller
numerical error, and an increased unweighting e�ciency.

generated events, as well as time and CPU cost spent in
the showering and detector-simulation phase.

5 Possible extensions of the method

The Born-spreading strategy introduced in this paper
aims at alleviating the impact of negative S weights in
MC@NLO simulations. Its goals are the same as the
well-established folding procedure, with which it can be
naturally compared. On one hand, folding guarantees a
progressive reduction of negative weights which scales
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Born spreading 
—alternative to folding



Born spreading

• All contributions in  now contain the integral of   

• Spreading function  can be any arbitrary function 

• For simplicity, take it independent from (i.e., integrated over) , 
i.e., we assume that the negatively weighted events are correlated strongly with the  dependence 

• Simple choice: since Born contribution is always positive we can 

• take  to be zero where the rest of the contribution is already positive 

• and positive where the rest of the event is negative

dσ(𝕊) Φr

F(Φr)
ΦB

Φr

F(Φr)
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Born spreading vs. Folding

• Define  by filling a 3D (or 2D) 
grid, since it is integrated over  

• Significant reduction of negative 
weights 

• (albeit not as strong as folding) 

• at a very modest computational 
cost 

• Current setup not optimised: 
BSc student working on a more 
optimal 

F(Φr)
ΦB

F(Φr)
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step-0 (s) step-1 (s) step-2 (s) negative
(grid setup) (integration) (generation) S weights

pp ! e+e�

default 1 14 147 7.1%
2⇥ 2⇥ 1 folding 1 33 258 2.1%
4⇥ 4⇥ 1 folding 1 114 781 1.8%
Born spreading 113 30 189 2.0%

pp ! H

default 1 121 187 10.6%
2⇥ 2⇥ 1 folding 1 115 399 2.7%
4⇥ 4⇥ 1 folding 1 228 1190 0.6%
Born spreading 82 122 203 1.1%

pp ! tt̄

default 2 132 455 8.6%
2⇥ 2⇥ 1 folding 2 262 1005 2.2%
4⇥ 4⇥ 1 folding 2 1092 3189 1.2%
Born spreading 199 137 448 2.1%

pp ! W+tt̄

default 5 346 1511 4.2%
2⇥ 2⇥ 1 folding 2 661 2938 2.2%
4⇥ 4⇥ 1 folding 2 2605 10020 1.7%
Born spreading 202 741 2138 2.6%

pp ! W+j

default 10 604 2013 24.2%
2⇥ 2⇥ 1 folding 10 1265 5160 13.2%
4⇥ 4⇥ 1 folding 7 2803 16020 9.0%
Born spreading 355 645 2226 18.8%

pp ! Hbb̄

default 77 1311 19440 27.3%
2⇥ 2⇥ 1 folding 39 4320 16380 22.4%
4⇥ 4⇥ 1 folding 48 17220 34260 20.9%
Born spreading 578 1263 20760 24.7%

Table 1. Runtimes and fraction of negative-weight S events for various LHC processes with default MG5 aMC code, two folding
setups, and Born spreading.

for negative-weight reduction, and runtimes are only mod-
erately increased at this level3. Being the fraction of neg-
ative weights still considerably large, the actual benefits
of folding with respect to Born spreading have to be care-
fully assessed taking into account a realistic number of

3 Notably, step-2 in pp ! Hbb̄ with 2⇥ 2⇥ 1 folding is even
faster than the default: most of the integration time in this case
is spent in the evaluation of the virtual contribution, which is
not a↵ected by folding. Hence the enhanced stability of the in-
tegrand achieved with folding is su�cient to guarantee smaller
numerical error, and an increased unweighting e�ciency.

generated events, as well as time and CPU cost spent in
the showering and detector-simulation phase.

5 Possible extensions of the method

The Born-spreading strategy introduced in this paper
aims at alleviating the impact of negative S weights in
MC@NLO simulations. Its goals are the same as the
well-established folding procedure, with which it can be
naturally compared. On one hand, folding guarantees a
progressive reduction of negative weights which scales

RF and P. Torrielli, arXiv:2310.04160



Recap

• A source of negative weights in an MC@NLO computation is from the S-events 

• It is an contribution differential in the n-body (Born) phase-space, but with 
support in the (n+1)-body phase-space 

• Folding smoothens the integral over the additional radiative phase-space by 
trowing more points for the latter for a given n-body phase-space point 

• Born Spreading moves the Born contribution into the (n+1)-body phase-
space, and most strongly where the latter is negative. Since the Born 
contribution is always positive, it reduces the negative contributions 

• Both the original and these new methods yield strictly identical results (within 
statistical fluctuations), although with a reduction of negative weights

19



MC@NLO-Δ



MC@NLO 
origins of negative weights

• Three sources of negative weights (with some overlap in the 
first two)
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Equation (2.9) gives an unambiguous meaning to the connection between a real-emission

configuration and its underlying Born-level configuration. Furthermore, eqs. (2.5)–(2.9)

imply:

d�n+1 = J(�n,�r) �(n) (�n) d�nd�r , (2.10)

where J is a factor, whose explicit form is not relevant here, of Jacobian origin. Finally,

we define the pull:

P (K(H)) ⌘ P (�n, ⇠, y,') , (2.11)

as a variable that measures the distance (in phase space) between a real-emission con-

figuration and its underlying Born-level configuration. Therefore, the pull must be such

that:

lim
⇠!0

P (K(H)) = lim
y!1

P (K(H)) = 0 . (2.12)

For example, in Drell-Yan production P can be identified with the transverse momentum

of the lepton pair. We note that, for any given process, there is ample freedom to define

the pull. However, for the sake of the present discussion its precise definition is irrelevant;

what matters is that, by assuming that P has canonical dimensions equal to one (which

is not restrictive), and by denoting by MH the typical hard scale of the process, owing to

eq. (2.12) the regions:

P (K(H)) ⌧ MH , (2.13)

P (K(H)) ⇠ MH

[
P (K(H)) > MH , (2.14)

correspond to K
(H) being a soft- and/or collinear-emission configuration, and an intermediate-

or hard-emission configuration, respectively.

We classify negative-weight events in MC@NLO as follows:

N.1 H events with P (K(H)) ⌧ MH ;

N.2 H events with P (K(H)) ⇠ MH ;

N.3 S events.

Events of both classes N.1 and N.2 are due to the fact that the MC counterterms might

overestimate the real-emission cross section, and thus the linear combination in eq. (2.2)

is negative. N.1 events will be cancelled after showering (i.e. at the level of physical cross

sections) by S events; being in an MC-dominated region and thanks to the fact that the

number of S events is generally much larger than that of H events, such a cancellation

occurs with high e�ciency9. By far and large, this also implies that they a↵ect very

mildly the shape of kinematical distributions10, their main impact being on the absolute

normalisation (we remind the reader that the MC@NLO and fixed-order NLO total cross

sections, before acceptance cuts, are identical).

9The presence of events of class N.3 just lowers this e�ciency, but does not hamper the cancellation.
10As for all H events in MC-dominated regions.
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In sect. 5 we present sample hadroproduction MC@NLO-� results, which we systemat-

ically compare with their MC@NLO counterparts. We draw our conclusions in sect. 6.

Finally, some technical information on the Pythia8 Sudakov form factors are collected in

appendix A.

2 Anatomy of negative weights in MC@NLO

We start by pointing out that in MC@NLO the exact amount of negative-weight events and

their distribution in the phase space depend on several elements. Among these, the most

important are the following: the parton shower MC one matches to, and in particular its

shower variables; the technique, which is typically a subtraction procedure, used to com-

pute the underlying NLO cross section; and the choice of the phase-space parametrisation

employed in the latter computation. Therefore, in a bottom-up approach to the reduction

of negative weights, one would construct the shower and the short-distance computations

with the specific goal of minimising f . This is a potentially very interesting strategy,

which however appears to be quite complicated; we shall not pursue it here. Rather, we

shall follow a top-down approach, where both the shower and the NLO calculations are

considered as given, and it is the matching between them which is responsible for the min-

imisation of f . This can be done thanks to the fact that, in spite of their specific features

mentioned above, negative weights possess universal characteristics which one can exploit

to reduce their number. In order to discuss such universal characteristics, we now sketch

out the basic MC@NLO formulae, simplifying them as much as possible, lest the details

obscure the basic ideas. If the reader wants to be definite, explicit expressions based on

FKS subtraction [14, 15] can be found e.g. in refs. [16–18] for the MadGraph5 aMC@NLO

implementation (MG5 aMC henceforth).

The key simplification from a notational viewpoint stems from one of the basic features

of the FKS subtraction and of the MC@NLO implementations based on it. Namely, for

any given real-emission process the phase space is partitioned in an e↵ective manner by

means of the S functions, so that one ultimately deals with a linear combination of short-

distance cross sections which have, at most, one soft and one collinear singularity. Such a

partition singles out two partons, called the FKS parton and its sister, with which the soft

and collinear singularities are associated. We shall thus work by using the rule:

R.1: The following formulae assume that the real-emission process, the FKS parton (la-

belled by i), and the sister of the latter (labelled by j) are given and fixed. In order

to obtain the physical cross sections, one must sum over these quantities.

Bearing the above condition in mind, the MC@NLO generating functional is written as

follows6:

FMC@NLO = FMC

⇣
K

(H)

⌘
d�

(H) + FMC

⇣
K

(S)

⌘
d�

(S)
, (2.1)

6As an example of the simplifications induced by rule R.1, the reader is encouraged to compare eq. (2.1)

with eq. (2.121) of ref. [17].

– 5 –

where FMC is the generating functional of the MC one matches to. By K
(H) and K

(S) we

have denoted H- and S-event kinematic configurations, respectively. For example, if Born-

level processes for the cross section of interest feature n final-state particles, K(H) and K
(S)

correspond to 2 ! n + 1 and 2 ! n configurations, respectively7. The short-distance cross

sections on the r.h.s. of eq. (2.1) are:

d�
(H) = d�

(NLO,E)
� d�

(MC)
, (2.2)

d�
(S) = d�

(MC) +
X

↵=S,C,SC

d�
(NLO,↵)

. (2.3)

Here, we have denoted by d�
(MC) the MC counterterms; the other contributions are identical

to those that enter an NLO fixed-order cross section:

d�
(NLO)

dK
= �

⇣
K �K

(H)

⌘
d�

(NLO,E) + �

⇣
K �K

(S)

⌘ X

↵=S,C,SC

d�
(NLO,↵)

. (2.4)

Thus, d�(NLO,E) is the real-emission contribution, while d�
(NLO,↵), ↵ = S,C, SC collect all

of the other terms (the Born, and contributions of virtual, soft, collinear, and soft-collinear

origin; in a non-FKS language, the latter are therefore the integrated and unintegrated

fixed-order counterterms). We point out that the cross sections on the r.h.s. of eqs. (2.2)

and (2.3) have support in an (n + 1)-body phase space. We write the latter as follows8:

d�n+1 = �(n+1) (�n+1) d�n+1 , (2.5)

where �n+1 denotes the set of the chosen 3n� 1 integration variables, whose nature need

not be specified here, except for the fact that its has the following general form:

�n+1 = �n

[
�r , (2.6)

�r =
�
⇠, y,'

 
. (2.7)

By �n we have denoted 3n� 4 integration variables that define n-body (i.e. Born-level)

configurations, and by �r the variables that parametrise the extra radiation that occurs

at the real-emission level. In an FKS framework (where one works in the c.m. frame of

the incoming partons), ⇠ is the rescaled FKS-parton energy, and y the cosine of the angle

between the FKS parton and its sister; ' is an azimuthal angle. Thus, ⇠ ! 0 and y ! 1

correspond to the soft and collinear limits, respectively. One can always construct the

phase spaces so that (see e.g. ref. [16]):

K
(S) = K

(S)(�n) , K
(H) = K

(H)(�n+1) ⌘ K
(H)(�n, ⇠, y,') , (2.8)

and

K
(S)(�n) = K

(H)(�n, 0, y,') = K
(H)(�n, ⇠, 1,') . (2.9)

7In order to simplify the notation, we assume here that all of the particles relevant to our processes are

strongly interacting. It is easy to include a posteriori extra particles which are not strongly interacting.
8Throughout this paper, we understand the integration over Bjorken x’s and the definition of the inte-

gration variables associated with them.
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Shower counter terms overestimate 
the real-emission corrections

n-body kinematics, but support in 
n+1-body phase space



Type N.2

• Reduction of negative events of type N.2 
• The shower is radiating into the hard region; fine for LO, but 

at NLO one emission is explicitly included through real-
emission matrix elements 
⟹ prefer smaller shower starting scales
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Equation (2.9) gives an unambiguous meaning to the connection between a real-emission

configuration and its underlying Born-level configuration. Furthermore, eqs. (2.5)–(2.9)

imply:

d�n+1 = J(�n,�r) �(n) (�n) d�nd�r , (2.10)

where J is a factor, whose explicit form is not relevant here, of Jacobian origin. Finally,

we define the pull:

P (K(H)) ⌘ P (�n, ⇠, y,') , (2.11)

as a variable that measures the distance (in phase space) between a real-emission con-

figuration and its underlying Born-level configuration. Therefore, the pull must be such

that:

lim
⇠!0

P (K(H)) = lim
y!1

P (K(H)) = 0 . (2.12)

For example, in Drell-Yan production P can be identified with the transverse momentum

of the lepton pair. We note that, for any given process, there is ample freedom to define

the pull. However, for the sake of the present discussion its precise definition is irrelevant;

what matters is that, by assuming that P has canonical dimensions equal to one (which

is not restrictive), and by denoting by MH the typical hard scale of the process, owing to

eq. (2.12) the regions:

P (K(H)) ⌧ MH , (2.13)

P (K(H)) ⇠ MH

[
P (K(H)) > MH , (2.14)

correspond to K
(H) being a soft- and/or collinear-emission configuration, and an intermediate-

or hard-emission configuration, respectively.

We classify negative-weight events in MC@NLO as follows:

N.1 H events with P (K(H)) ⌧ MH ;

N.2 H events with P (K(H)) ⇠ MH ;

N.3 S events.

Events of both classes N.1 and N.2 are due to the fact that the MC counterterms might

overestimate the real-emission cross section, and thus the linear combination in eq. (2.2)

is negative. N.1 events will be cancelled after showering (i.e. at the level of physical cross

sections) by S events; being in an MC-dominated region and thanks to the fact that the

number of S events is generally much larger than that of H events, such a cancellation

occurs with high e�ciency9. By far and large, this also implies that they a↵ect very

mildly the shape of kinematical distributions10, their main impact being on the absolute

normalisation (we remind the reader that the MC@NLO and fixed-order NLO total cross

sections, before acceptance cuts, are identical).

9The presence of events of class N.3 just lowers this e�ciency, but does not hamper the cancellation.
10As for all H events in MC-dominated regions.
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In sect. 5 we present sample hadroproduction MC@NLO-� results, which we systemat-

ically compare with their MC@NLO counterparts. We draw our conclusions in sect. 6.

Finally, some technical information on the Pythia8 Sudakov form factors are collected in

appendix A.

2 Anatomy of negative weights in MC@NLO

We start by pointing out that in MC@NLO the exact amount of negative-weight events and

their distribution in the phase space depend on several elements. Among these, the most

important are the following: the parton shower MC one matches to, and in particular its

shower variables; the technique, which is typically a subtraction procedure, used to com-

pute the underlying NLO cross section; and the choice of the phase-space parametrisation

employed in the latter computation. Therefore, in a bottom-up approach to the reduction

of negative weights, one would construct the shower and the short-distance computations

with the specific goal of minimising f . This is a potentially very interesting strategy,

which however appears to be quite complicated; we shall not pursue it here. Rather, we

shall follow a top-down approach, where both the shower and the NLO calculations are

considered as given, and it is the matching between them which is responsible for the min-

imisation of f . This can be done thanks to the fact that, in spite of their specific features

mentioned above, negative weights possess universal characteristics which one can exploit

to reduce their number. In order to discuss such universal characteristics, we now sketch

out the basic MC@NLO formulae, simplifying them as much as possible, lest the details

obscure the basic ideas. If the reader wants to be definite, explicit expressions based on

FKS subtraction [14, 15] can be found e.g. in refs. [16–18] for the MadGraph5 aMC@NLO

implementation (MG5 aMC henceforth).

The key simplification from a notational viewpoint stems from one of the basic features

of the FKS subtraction and of the MC@NLO implementations based on it. Namely, for

any given real-emission process the phase space is partitioned in an e↵ective manner by

means of the S functions, so that one ultimately deals with a linear combination of short-

distance cross sections which have, at most, one soft and one collinear singularity. Such a

partition singles out two partons, called the FKS parton and its sister, with which the soft

and collinear singularities are associated. We shall thus work by using the rule:

R.1: The following formulae assume that the real-emission process, the FKS parton (la-

belled by i), and the sister of the latter (labelled by j) are given and fixed. In order

to obtain the physical cross sections, one must sum over these quantities.

Bearing the above condition in mind, the MC@NLO generating functional is written as

follows6:

FMC@NLO = FMC

⇣
K

(H)

⌘
d�

(H) + FMC

⇣
K

(S)

⌘
d�

(S)
, (2.1)

6As an example of the simplifications induced by rule R.1, the reader is encouraged to compare eq. (2.1)

with eq. (2.121) of ref. [17].
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where FMC is the generating functional of the MC one matches to. By K
(H) and K

(S) we

have denoted H- and S-event kinematic configurations, respectively. For example, if Born-

level processes for the cross section of interest feature n final-state particles, K(H) and K
(S)

correspond to 2 ! n + 1 and 2 ! n configurations, respectively7. The short-distance cross

sections on the r.h.s. of eq. (2.1) are:

d�
(H) = d�

(NLO,E)
� d�

(MC)
, (2.2)

d�
(S) = d�

(MC) +
X

↵=S,C,SC

d�
(NLO,↵)

. (2.3)

Here, we have denoted by d�
(MC) the MC counterterms; the other contributions are identical

to those that enter an NLO fixed-order cross section:

d�
(NLO)

dK
= �

⇣
K �K

(H)

⌘
d�

(NLO,E) + �

⇣
K �K

(S)

⌘ X

↵=S,C,SC

d�
(NLO,↵)

. (2.4)

Thus, d�(NLO,E) is the real-emission contribution, while d�
(NLO,↵), ↵ = S,C, SC collect all

of the other terms (the Born, and contributions of virtual, soft, collinear, and soft-collinear

origin; in a non-FKS language, the latter are therefore the integrated and unintegrated

fixed-order counterterms). We point out that the cross sections on the r.h.s. of eqs. (2.2)

and (2.3) have support in an (n + 1)-body phase space. We write the latter as follows8:

d�n+1 = �(n+1) (�n+1) d�n+1 , (2.5)

where �n+1 denotes the set of the chosen 3n� 1 integration variables, whose nature need

not be specified here, except for the fact that its has the following general form:

�n+1 = �n

[
�r , (2.6)

�r =
�
⇠, y,'

 
. (2.7)

By �n we have denoted 3n� 4 integration variables that define n-body (i.e. Born-level)

configurations, and by �r the variables that parametrise the extra radiation that occurs

at the real-emission level. In an FKS framework (where one works in the c.m. frame of

the incoming partons), ⇠ is the rescaled FKS-parton energy, and y the cosine of the angle

between the FKS parton and its sister; ' is an azimuthal angle. Thus, ⇠ ! 0 and y ! 1

correspond to the soft and collinear limits, respectively. One can always construct the

phase spaces so that (see e.g. ref. [16]):

K
(S) = K

(S)(�n) , K
(H) = K

(H)(�n+1) ⌘ K
(H)(�n, ⇠, y,') , (2.8)

and

K
(S)(�n) = K

(H)(�n, 0, y,') = K
(H)(�n, ⇠, 1,') . (2.9)

7In order to simplify the notation, we assume here that all of the particles relevant to our processes are

strongly interacting. It is easy to include a posteriori extra particles which are not strongly interacting.
8Throughout this paper, we understand the integration over Bjorken x’s and the definition of the inte-

gration variables associated with them.
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MC@NLO-Δ

• Reduction of negative events of type N.1 
• Modify the MC@NLO procedure: 

• with 
 in the soft/collinear limits 
 in the hard regions 

⟹ use shower no-emission probability (between hard scale and scale of 
the emission)

(d�(S) in this case) with support in a (3n� 1)-dimensional space can be locally negative in

such a space, but positive-definite in the (3n�4)-dimensional space obtained by integrating

over three variables (�r in this case) of the former. Thus, if the unweighting of such a

function is performed in the (3n � 1)-dimensional ((3n � 4)-dimensional) space, negative

weights will (will not) occur.

In summary, the reduction of negative-weight S events can be achieved without chang-

ing the MC@NLO prescription, simply by means of eq. (2.15). Conversely, the case of

H events is more involved, and requires a modification of the matching procedure, which

we shall detail in the next section. In the context of this new prescription, that we call

MC@NLO-�, the reduction of class-N.3 events can again by achieved thanks to the ana-

logue of eq. (2.15).

3 The MC@NLO-� matching prescription

Consider the following generating functional:

FMC@NLO-� = FMC

⇣
K

(H)

⌘
d�

(�,H) + FMC

⇣
K

(S)

⌘
d�

(�,S)
, (3.1)

where:

d�
(�,H) =

�
d�

(NLO,E)
� d�

(MC)
�
� , (3.2)

d�
(�,S) = d�

(MC)� +
X

↵=S,C,SC

d�
(NLO,↵) + d�

(NLO,E)
�
1 � �

�
. (3.3)

The quantity � is understood to have support in the (n + 1)-body phase-space, and to

obey the condition 0  �  1. Bearing in mind the discussion on both the characteristics

of class-N.1 events and of all H events in MC-dominated regions (see sect. 2), we expect a

reduction of the former ones with negligible e↵ects on the shapes of physical distributions

in the latter regions if � is such that:

� �! 0 soft and collinear limits. (3.4)

Note, in fact, that with eq. (3.4) one manifestly obtains FMC@NLO-� / FMC

�
K

(S)
�

in the

soft and collinear regions, analogously to what happens with the standard MC@NLO

matching13. Conversely, we know that H events are the sole responsible for giving the

NLO-accurate shapes and normalisations in hard-emission regions. Thus, we must have:

� �! 1 hard regions. (3.5)

Equations (3.4) and (3.5) are strongly reminiscent of the behaviour of a Sudakov form

factor. Indeed, we shall later give the definition of � in terms of a combination of MC

13Interestingly, and contrary to the case of MC@NLO, this property would hold even if d�
(MC) and

d�
(NLO,E) did not have the same behaviours in such regions, which is appealing in view of the patterns of

soft emissions by MCs, and their implications for NLO matchings [1]. We shall not elaborate on this point

any further here, and only briefly comment on it at the end of sect. 3.1.
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(d�(S) in this case) with support in a (3n� 1)-dimensional space can be locally negative in

such a space, but positive-definite in the (3n�4)-dimensional space obtained by integrating

over three variables (�r in this case) of the former. Thus, if the unweighting of such a

function is performed in the (3n � 1)-dimensional ((3n � 4)-dimensional) space, negative

weights will (will not) occur.

In summary, the reduction of negative-weight S events can be achieved without chang-

ing the MC@NLO prescription, simply by means of eq. (2.15). Conversely, the case of

H events is more involved, and requires a modification of the matching procedure, which

we shall detail in the next section. In the context of this new prescription, that we call

MC@NLO-�, the reduction of class-N.3 events can again by achieved thanks to the ana-

logue of eq. (2.15).

3 The MC@NLO-� matching prescription

Consider the following generating functional:

FMC@NLO-� = FMC

⇣
K

(H)

⌘
d�

(�,H) + FMC

⇣
K

(S)

⌘
d�

(�,S)
, (3.1)

where:

d�
(�,H) =

�
d�

(NLO,E)
� d�

(MC)
�
� , (3.2)

d�
(�,S) = d�

(MC)� +
X

↵=S,C,SC

d�
(NLO,↵) + d�

(NLO,E)
�
1 � �

�
. (3.3)

The quantity � is understood to have support in the (n + 1)-body phase-space, and to

obey the condition 0  �  1. Bearing in mind the discussion on both the characteristics

of class-N.1 events and of all H events in MC-dominated regions (see sect. 2), we expect a

reduction of the former ones with negligible e↵ects on the shapes of physical distributions

in the latter regions if � is such that:

� �! 0 soft and collinear limits. (3.4)

Note, in fact, that with eq. (3.4) one manifestly obtains FMC@NLO-� / FMC

�
K

(S)
�

in the

soft and collinear regions, analogously to what happens with the standard MC@NLO

matching13. Conversely, we know that H events are the sole responsible for giving the

NLO-accurate shapes and normalisations in hard-emission regions. Thus, we must have:

� �! 1 hard regions. (3.5)

Equations (3.4) and (3.5) are strongly reminiscent of the behaviour of a Sudakov form

factor. Indeed, we shall later give the definition of � in terms of a combination of MC

13Interestingly, and contrary to the case of MC@NLO, this property would hold even if d�
(MC) and

d�
(NLO,E) did not have the same behaviours in such regions, which is appealing in view of the patterns of

soft emissions by MCs, and their implications for NLO matchings [1]. We shall not elaborate on this point

any further here, and only briefly comment on it at the end of sect. 3.1.

– 9 –

23

Equation (2.9) gives an unambiguous meaning to the connection between a real-emission

configuration and its underlying Born-level configuration. Furthermore, eqs. (2.5)–(2.9)

imply:

d�n+1 = J(�n,�r) �(n) (�n) d�nd�r , (2.10)

where J is a factor, whose explicit form is not relevant here, of Jacobian origin. Finally,

we define the pull:

P (K(H)) ⌘ P (�n, ⇠, y,') , (2.11)

as a variable that measures the distance (in phase space) between a real-emission con-

figuration and its underlying Born-level configuration. Therefore, the pull must be such

that:

lim
⇠!0

P (K(H)) = lim
y!1

P (K(H)) = 0 . (2.12)

For example, in Drell-Yan production P can be identified with the transverse momentum

of the lepton pair. We note that, for any given process, there is ample freedom to define

the pull. However, for the sake of the present discussion its precise definition is irrelevant;

what matters is that, by assuming that P has canonical dimensions equal to one (which

is not restrictive), and by denoting by MH the typical hard scale of the process, owing to

eq. (2.12) the regions:

P (K(H)) ⌧ MH , (2.13)

P (K(H)) ⇠ MH

[
P (K(H)) > MH , (2.14)

correspond to K
(H) being a soft- and/or collinear-emission configuration, and an intermediate-

or hard-emission configuration, respectively.

We classify negative-weight events in MC@NLO as follows:

N.1 H events with P (K(H)) ⌧ MH ;

N.2 H events with P (K(H)) ⇠ MH ;

N.3 S events.

Events of both classes N.1 and N.2 are due to the fact that the MC counterterms might

overestimate the real-emission cross section, and thus the linear combination in eq. (2.2)

is negative. N.1 events will be cancelled after showering (i.e. at the level of physical cross

sections) by S events; being in an MC-dominated region and thanks to the fact that the

number of S events is generally much larger than that of H events, such a cancellation

occurs with high e�ciency9. By far and large, this also implies that they a↵ect very

mildly the shape of kinematical distributions10, their main impact being on the absolute

normalisation (we remind the reader that the MC@NLO and fixed-order NLO total cross

sections, before acceptance cuts, are identical).

9The presence of events of class N.3 just lowers this e�ciency, but does not hamper the cancellation.
10As for all H events in MC-dominated regions.
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In sect. 5 we present sample hadroproduction MC@NLO-� results, which we systemat-

ically compare with their MC@NLO counterparts. We draw our conclusions in sect. 6.

Finally, some technical information on the Pythia8 Sudakov form factors are collected in

appendix A.

2 Anatomy of negative weights in MC@NLO

We start by pointing out that in MC@NLO the exact amount of negative-weight events and

their distribution in the phase space depend on several elements. Among these, the most

important are the following: the parton shower MC one matches to, and in particular its

shower variables; the technique, which is typically a subtraction procedure, used to com-

pute the underlying NLO cross section; and the choice of the phase-space parametrisation

employed in the latter computation. Therefore, in a bottom-up approach to the reduction

of negative weights, one would construct the shower and the short-distance computations

with the specific goal of minimising f . This is a potentially very interesting strategy,

which however appears to be quite complicated; we shall not pursue it here. Rather, we

shall follow a top-down approach, where both the shower and the NLO calculations are

considered as given, and it is the matching between them which is responsible for the min-

imisation of f . This can be done thanks to the fact that, in spite of their specific features

mentioned above, negative weights possess universal characteristics which one can exploit

to reduce their number. In order to discuss such universal characteristics, we now sketch

out the basic MC@NLO formulae, simplifying them as much as possible, lest the details

obscure the basic ideas. If the reader wants to be definite, explicit expressions based on

FKS subtraction [14, 15] can be found e.g. in refs. [16–18] for the MadGraph5 aMC@NLO

implementation (MG5 aMC henceforth).

The key simplification from a notational viewpoint stems from one of the basic features

of the FKS subtraction and of the MC@NLO implementations based on it. Namely, for

any given real-emission process the phase space is partitioned in an e↵ective manner by

means of the S functions, so that one ultimately deals with a linear combination of short-

distance cross sections which have, at most, one soft and one collinear singularity. Such a

partition singles out two partons, called the FKS parton and its sister, with which the soft

and collinear singularities are associated. We shall thus work by using the rule:

R.1: The following formulae assume that the real-emission process, the FKS parton (la-

belled by i), and the sister of the latter (labelled by j) are given and fixed. In order

to obtain the physical cross sections, one must sum over these quantities.

Bearing the above condition in mind, the MC@NLO generating functional is written as

follows6:

FMC@NLO = FMC

⇣
K

(H)

⌘
d�

(H) + FMC

⇣
K

(S)

⌘
d�

(S)
, (2.1)

6As an example of the simplifications induced by rule R.1, the reader is encouraged to compare eq. (2.1)

with eq. (2.121) of ref. [17].
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where FMC is the generating functional of the MC one matches to. By K
(H) and K

(S) we

have denoted H- and S-event kinematic configurations, respectively. For example, if Born-

level processes for the cross section of interest feature n final-state particles, K(H) and K
(S)

correspond to 2 ! n + 1 and 2 ! n configurations, respectively7. The short-distance cross

sections on the r.h.s. of eq. (2.1) are:

d�
(H) = d�

(NLO,E)
� d�

(MC)
, (2.2)

d�
(S) = d�

(MC) +
X

↵=S,C,SC

d�
(NLO,↵)

. (2.3)

Here, we have denoted by d�
(MC) the MC counterterms; the other contributions are identical

to those that enter an NLO fixed-order cross section:

d�
(NLO)

dK
= �

⇣
K �K

(H)

⌘
d�

(NLO,E) + �

⇣
K �K

(S)

⌘ X

↵=S,C,SC

d�
(NLO,↵)

. (2.4)

Thus, d�(NLO,E) is the real-emission contribution, while d�
(NLO,↵), ↵ = S,C, SC collect all

of the other terms (the Born, and contributions of virtual, soft, collinear, and soft-collinear

origin; in a non-FKS language, the latter are therefore the integrated and unintegrated

fixed-order counterterms). We point out that the cross sections on the r.h.s. of eqs. (2.2)

and (2.3) have support in an (n + 1)-body phase space. We write the latter as follows8:

d�n+1 = �(n+1) (�n+1) d�n+1 , (2.5)

where �n+1 denotes the set of the chosen 3n� 1 integration variables, whose nature need

not be specified here, except for the fact that its has the following general form:

�n+1 = �n

[
�r , (2.6)

�r =
�
⇠, y,'

 
. (2.7)

By �n we have denoted 3n� 4 integration variables that define n-body (i.e. Born-level)

configurations, and by �r the variables that parametrise the extra radiation that occurs

at the real-emission level. In an FKS framework (where one works in the c.m. frame of

the incoming partons), ⇠ is the rescaled FKS-parton energy, and y the cosine of the angle

between the FKS parton and its sister; ' is an azimuthal angle. Thus, ⇠ ! 0 and y ! 1

correspond to the soft and collinear limits, respectively. One can always construct the

phase spaces so that (see e.g. ref. [16]):

K
(S) = K

(S)(�n) , K
(H) = K

(H)(�n+1) ⌘ K
(H)(�n, ⇠, y,') , (2.8)

and

K
(S)(�n) = K

(H)(�n, 0, y,') = K
(H)(�n, ⇠, 1,') . (2.9)

7In order to simplify the notation, we assume here that all of the particles relevant to our processes are

strongly interacting. It is easy to include a posteriori extra particles which are not strongly interacting.
8Throughout this paper, we understand the integration over Bjorken x’s and the definition of the inte-

gration variables associated with them.
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(d�(S) in this case) with support in a (3n� 1)-dimensional space can be locally negative in

such a space, but positive-definite in the (3n�4)-dimensional space obtained by integrating

over three variables (�r in this case) of the former. Thus, if the unweighting of such a

function is performed in the (3n � 1)-dimensional ((3n � 4)-dimensional) space, negative

weights will (will not) occur.

In summary, the reduction of negative-weight S events can be achieved without chang-

ing the MC@NLO prescription, simply by means of eq. (2.15). Conversely, the case of

H events is more involved, and requires a modification of the matching procedure, which

we shall detail in the next section. In the context of this new prescription, that we call

MC@NLO-�, the reduction of class-N.3 events can again by achieved thanks to the ana-

logue of eq. (2.15).

3 The MC@NLO-� matching prescription

Consider the following generating functional:

FMC@NLO-� = FMC

⇣
K

(H)

⌘
d�

(�,H) + FMC

⇣
K

(S)

⌘
d�

(�,S)
, (3.1)

where:

d�
(�,H) =

�
d�

(NLO,E)
� d�

(MC)
�
� , (3.2)

d�
(�,S) = d�

(MC)� +
X

↵=S,C,SC

d�
(NLO,↵) + d�

(NLO,E)
�
1 � �

�
. (3.3)

The quantity � is understood to have support in the (n + 1)-body phase-space, and to

obey the condition 0  �  1. Bearing in mind the discussion on both the characteristics

of class-N.1 events and of all H events in MC-dominated regions (see sect. 2), we expect a

reduction of the former ones with negligible e↵ects on the shapes of physical distributions

in the latter regions if � is such that:

� �! 0 soft and collinear limits. (3.4)

Note, in fact, that with eq. (3.4) one manifestly obtains FMC@NLO-� / FMC

�
K

(S)
�

in the

soft and collinear regions, analogously to what happens with the standard MC@NLO

matching13. Conversely, we know that H events are the sole responsible for giving the

NLO-accurate shapes and normalisations in hard-emission regions. Thus, we must have:

� �! 1 hard regions. (3.5)

Equations (3.4) and (3.5) are strongly reminiscent of the behaviour of a Sudakov form

factor. Indeed, we shall later give the definition of � in terms of a combination of MC

13Interestingly, and contrary to the case of MC@NLO, this property would hold even if d�
(MC) and

d�
(NLO,E) did not have the same behaviours in such regions, which is appealing in view of the patterns of

soft emissions by MCs, and their implications for NLO matchings [1]. We shall not elaborate on this point

any further here, and only briefly comment on it at the end of sect. 3.1.
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(d�(S) in this case) with support in a (3n� 1)-dimensional space can be locally negative in

such a space, but positive-definite in the (3n�4)-dimensional space obtained by integrating

over three variables (�r in this case) of the former. Thus, if the unweighting of such a

function is performed in the (3n � 1)-dimensional ((3n � 4)-dimensional) space, negative

weights will (will not) occur.

In summary, the reduction of negative-weight S events can be achieved without chang-

ing the MC@NLO prescription, simply by means of eq. (2.15). Conversely, the case of

H events is more involved, and requires a modification of the matching procedure, which

we shall detail in the next section. In the context of this new prescription, that we call

MC@NLO-�, the reduction of class-N.3 events can again by achieved thanks to the ana-

logue of eq. (2.15).

3 The MC@NLO-� matching prescription

Consider the following generating functional:

FMC@NLO-� = FMC

⇣
K

(H)

⌘
d�

(�,H) + FMC

⇣
K

(S)

⌘
d�

(�,S)
, (3.1)

where:

d�
(�,H) =

�
d�

(NLO,E)
� d�

(MC)
�
� , (3.2)

d�
(�,S) = d�

(MC)� +
X

↵=S,C,SC

d�
(NLO,↵) + d�

(NLO,E)
�
1 � �

�
. (3.3)

The quantity � is understood to have support in the (n + 1)-body phase-space, and to

obey the condition 0  �  1. Bearing in mind the discussion on both the characteristics

of class-N.1 events and of all H events in MC-dominated regions (see sect. 2), we expect a

reduction of the former ones with negligible e↵ects on the shapes of physical distributions

in the latter regions if � is such that:

� �! 0 soft and collinear limits. (3.4)

Note, in fact, that with eq. (3.4) one manifestly obtains FMC@NLO-� / FMC

�
K

(S)
�

in the

soft and collinear regions, analogously to what happens with the standard MC@NLO

matching13. Conversely, we know that H events are the sole responsible for giving the

NLO-accurate shapes and normalisations in hard-emission regions. Thus, we must have:

� �! 1 hard regions. (3.5)

Equations (3.4) and (3.5) are strongly reminiscent of the behaviour of a Sudakov form

factor. Indeed, we shall later give the definition of � in terms of a combination of MC

13Interestingly, and contrary to the case of MC@NLO, this property would hold even if d�
(MC) and

d�
(NLO,E) did not have the same behaviours in such regions, which is appealing in view of the patterns of

soft emissions by MCs, and their implications for NLO matchings [1]. We shall not elaborate on this point

any further here, and only briefly comment on it at the end of sect. 3.1.
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Δ dampens the contribution 
from the H-events in the 
soft/collinear region, and 
adds it the S-event 
contribution. 
The idea: the shower will do 
a good job to re-fill the 
phase-space



NLO accuracy

• The formal expansion of the no-emission probability is  

 
• Furthermore, in the soft/collinear limits the logarithms are 

similar to the ones that are generated by the shower 
 
 
⟹ From this one can conclude that accuracy is the same as 
with the default MC@NLO method 

• However, beyond NLO contributions can be very much different: 
MC@NLO-Δ is effectively a new matching procedure 
i.e., results will NOT be identical between the original and new predictions

no-emission probabilities (which are governed by Sudakovs)14. Before going into further

details, we note that Sudakovs have a well-defined perturbative expansion, such that:

� = 1 + O(↵S) . (3.6)

By using eq. (3.6), a straightforward computation then shows that:

d�
(�,H) = d�

(H) + O
�
↵
b+2

S

�
, (3.7)

d�
(�,S) = d�

(S) + O
�
↵
b+2

S

�
, (3.8)

which imply that the generating functionals of eqs. (2.1) and (3.1) have the same expression

at the NLO (while in general they di↵er at the NNLO and beyond). Furthermore:

�NLO ⌘

Z

�n+1

�
d�

(S) + d�
(H)
�

=

Z

�n+1

�
d�

(�,S) + d�
(�,H)

�
, (3.9)

where �NLO is the total NLO cross section, prior to any acceptance cuts.

We point out that eq. (3.6), which obviously is not a property that is uniquely asso-

ciated with a Sudakov, is a su�cient condition for eqs. (3.7)–(3.9) to be fulfilled. How-

ever, eq. (3.6) is not su�cient for FMC@NLO and FMC@NLO-� to produce comparable physical

results15; for this to happen other conditions, in particular that of eq. (3.5) and the re-

quirement that 0  �  1, are needed too. Taken together, then, all of these conditions

constrain the functional form of � to be, if not that of a Sudakov, at least Sudakov-like.

Indeed, in order to sketch out the basic physics ideas that underpin the MC@NLO-� pre-

scription, we need only assume that the dependence of such form of � upon the kinematical

(n + 1)-body degrees of freedom can be parametrised in terms of two scales16, as follows:

�
�
K

(H)
�

= �
�
t(K(H)), µ2(K(S))

�
. (3.10)

Here, K
(S) denotes the n-body configuration underlying the given K

(H) (see eq. (2.9)).

We call µ2(K(S)) and t(K(H)) the starting and stopping scales (squared), respectively. We

require them to have the following properties:

µ(K(S)) ⇠ MH , (3.11)
q
t(K(H)) ⌧ MH K

(H) soft/collinear , (3.12)
q
t(K(H)) ⇠ MH K

(H) intermediate/hard . (3.13)

Then, owing to the properties of eq. (3.10), eqs. (3.11) and (3.12) imply eq. (3.4), while

eqs. (3.11) and (3.13) imply eq. (3.5). Furthermore, by comparing eqs. (3.12) and (3.13)

14We note that Sudakov form factors have been employed in exclusive H events in the context of a

merging (as opposed to matching) procedure in ref. [19]; however, no connection has been made there with

the reduction of negative weights, and we are unable to say whether it actually occurs, and if so to which

extent, in that method.
15In other words, not only results associated with a formal perturbative expansion, but also those at the

observable level that include shower e↵ects.
16In the fully realistic case we shall soon discuss, these two scales will be replaced by two sets of scales.

– 10 –
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Implementation

• Run-time interface between MG5_aMC and Pythia8 
• MG5_aMC generates phase-space points, all the relevant matrix 

elements and MC counter terms 
• It calls Pythia8 to determine the relevant emission scales for each 

dipole in the S-events to obtain the H-event 
• For fast evaluation, the Pythia8 Sudakov factors have been 

tabulated (2D grids (dipole mass and scale); one for each parton flavour; one for each 
dipole type (II, IF, FI, FF)) 

• No emission probabilities included by MG5_aMC 
• Major complication: 

- emission scale is different for each dipole 
- when showering events requires a different starting scale for each 
dipole

25

RF et al. 2002.12716 [hep-ph]



Reduction of negative weights

• Fraction of negative weights and relative cost (assuming no correlations) 

26

111 212 414 111-� 212-� 414-�

pp ! e+e� 7.1% (1.4) 3.6% (1.2) 3.3% (1.1) 5.7% (1.3) 2.9% (1.1) 2.8% (1.1)

pp ! e+⌫e 7.3% (1.4) 4.0% (1.2) 3.7% (1.2) 6.1% (1.3) 3.5% (1.2) 3.3% (1.1)

pp ! h 10.4% (1.6) 4.8% (1.2) 3.4% (1.2) 4.2% (1.2) 1.3% (1.1) 0.4% (1.0)

pp ! tt̄ 22.9% (3.4) 20.0% (2.8) 19.5% (2.7) 10.1% (1.6) 5.1% (1.2) 4.4% (1.2)

pp ! W+tt̄ 16.0% (2.2) 15.0% (2.0) 15.2% (2.1) 11.6% (1.7) 10.4% (1.6) 10.2% (1.6)

pp ! hbb̄ 40.1% (25.7) 37.9% (17.1) 37.4% (15.7) 36.7% (14.2) 31.2% (7.0) 29.9% (6.2)

pp ! W+j 29.7% (6.1) 24.3% (3.8) 22.7% (3.3) 26.5% (4.5) 18.6% (2.5) 15.9% (2.1)

pp ! W+j[50] 21.7% (3.1) 16.3% (2.2) 15.7% (2.1) 15.4% (2.1) 7.7% (1.4) 6.0% (1.3)

Table 1: Fraction of negative weights and corresponding relative cost for the seven processes under consideration without and
with the inclusion of � and folding. For the pp ! hbb̄ process, the shower starting scale for the non-Delta code has been divided
by two. For the pp ! W+j process, only the default generation cut is applied, while for pp ! W+j[50], the jet transverse
momentum is required to be larger then 50 GeV at the analysis level.

1

MC@NLO MC@NLO-Δ

no folding
4x folding

16x folding

111 212 414 111-� 212-� 414-�

pp ! e+e� 7.1% (1.4) 3.6% (1.2) 3.3% (1.1) 5.7% (1.3) 2.9% (1.1) 2.8% (1.1)

pp ! e+⌫e 7.3% (1.4) 4.0% (1.2) 3.7% (1.2) 6.1% (1.3) 3.5% (1.2) 3.3% (1.1)

pp ! h 10.4% (1.6) 4.8% (1.2) 3.4% (1.2) 4.2% (1.2) 1.3% (1.1) 0.4% (1.0)

pp ! tt̄ 22.9% (3.4) 20.0% (2.8) 19.5% (2.7) 10.1% (1.6) 5.1% (1.2) 4.4% (1.2)

pp ! W+tt̄ 16.0% (2.2) 15.0% (2.0) 15.2% (2.1) 11.6% (1.7) 10.4% (1.6) 10.2% (1.6)

pp ! hbb̄ 40.1% (25.7) 37.9% (17.1) 37.4% (15.7) 36.7% (14.2) 31.2% (7.0) 29.9% (6.2)

pp ! W+j 29.7% (6.1) 24.3% (3.8) 22.7% (3.3) 26.5% (4.5) 18.6% (2.5) 15.9% (2.1)

pp ! W+j[50] 21.7% (3.1) 16.3% (2.2) 15.7% (2.1) 15.4% (2.1) 7.7% (1.4) 6.0% (1.3)

Table 1: Fraction of negative weights and corresponding relative cost for the seven processes under consideration without and
with the inclusion of � and folding. For the pp ! hbb̄ process, the shower starting scale for the non-Delta code has been divided
by two. For the pp ! W+j process, only the default generation cut is applied, while for pp ! W+j[50], the jet transverse
momentum is required to be larger then 50 GeV at the analysis level.
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Selected results

• Transverse momentum of the Born system 
• Differences between default and Δ are sizeable, but reasonable 
• Folding has no effect (apart from increased statistics), as it should be
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8 years of development…

• First ideas discussed in 2015 
together with Stefano Frixione, Stefan Prestel, Paolo Torrielli 

• Serious work started in 2017 

• Published MC@NLO-Δ in 2002.12716 [hep-ph], but code did not go public 

• After publication, we found 

• some bugs… 

• a better treatment of events that are in the dead zone 

• some improvements in the shower scale assignments 

• compatibility with Pythia8.3 
(thanks to Leif Gellersen and Christian Preuss!) 

• Code public: 2023
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Summary
• Comparisons between LHC data and predictions show excellent agreement 

• The tools are optimised, but there are always improvements possible 
• One major drawback of combining higher-order Matrix Element computations with Parton Showers 

are the event-by-event negative weight contributions that only cancel in (IR-safe) observables 

• MC@NLO-Δ reduces the number of negative weights by a significant amount 
• New matching procedure; results differ from default MC@NLO—within the matching 

systematics 
• Run-time interface between MG5_aMC and Pythia8 

• With Δ enabled, CPU time to generate events increases by a factor ~3 
• 4x folding increases the run time also by a factor ~3 
• 16x folding about a factor ~32 

 

⟹ reduction of negative weights due to Δ and folding typically not worth it from a CPU point 
of view, except when there is more overhead than simply showering the events (detector 
simulation, storage space, etc.) 

• but with Born Spreading it probably is! 
(spreading needs to be further optimised, though)
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BONUS: 
Reducing statistical fluctuations at Fixed Order



Statistical fluctuations at fixed order
• A major source of statistical fluctuations in fixed order differential distributions 

are the 'misbinning' effects 
• At NLO: the real-emission and IR-subtraction terms can end up in 

different bins 
• This depends on the mapping between the n and (n+1)-body phase-

space

31

large statistical fluctuations 
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no misbinning for 
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Δ for Fixed order
• NLO diff. cross section (schematically) 

 

• Introduce Δ factor: 

• Δ does not need to be the Pythia8 no-emission probability: 
it can be a simple LL Sudakov factor between the hard scale and 
the scale of the emission 
⟹ NLO accuracy is conserved
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pT(4lepton)

• Same random seed: 
exactly the same PS 
points  

• Inclusion of Δ changes the 
4-lepton spectrum at small 
transverse momenta 

• However, this is the region 
where you cannot trust 
FO perturbation theory 

• Two versions (including Δ 
for real and subtraction, 
respectively) give identical 
results
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Hardest lepton and invariant mass

• Of course, no effect in 4-lepton invariant mass 
• Significant reduction of statistical fluctuations in pT(l1); 

compatible with the default
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Z-bosons (ordered in pT)

• Again, large reduction in statistical fluctuations 
• Compatible within scale uncertainties; 

expect at low pT(Z), where FO perturbation theory cannot be trusted
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Summary: BONUS

• Adding Δ is a simple improvement to fixed order computations that can significantly 
reduce statistical fluctuations in diff. distributions 

• Inclusive rates are not affected 
⟹ Observables conserved in the mapping are not affected 

• Other observables see some changes, but only when sensitive to IR region, where 
fixed order perturbation theory does not work 
⟹ Statistical fluctuations reduced by factor ~2-3 at no additional cost. 
Severe misbinning is gone 

• Worth investigating for other processes and at NNLO
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