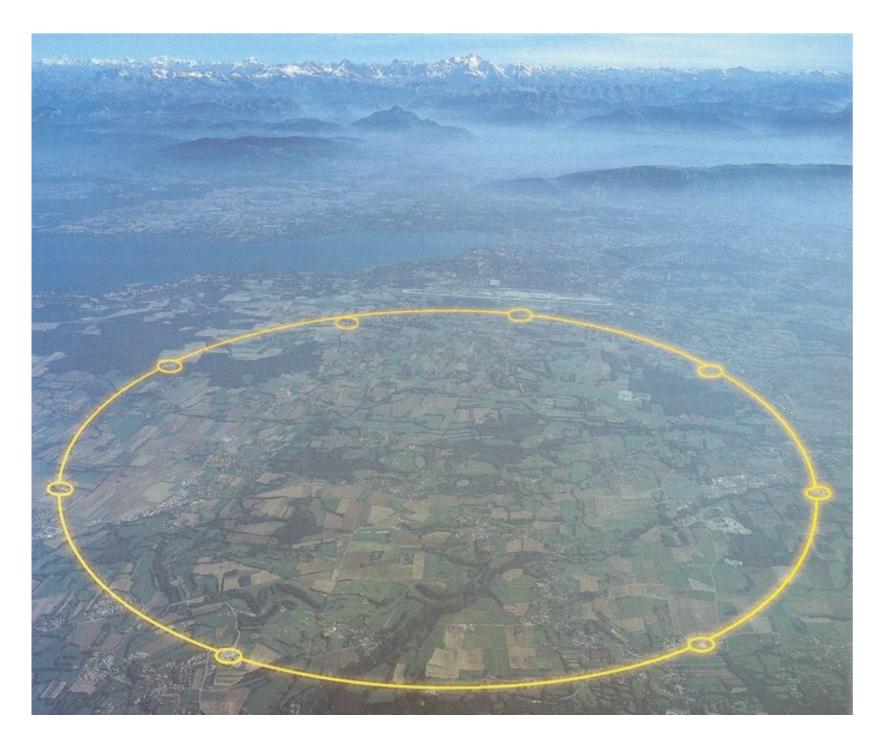


In the weeds of collider simulations: navigating negative weights

Rikkert Frederix Lund University

Freiburg seminar, Wednesday, Feb. 7, 2024

Large Hadron Collider at CERN



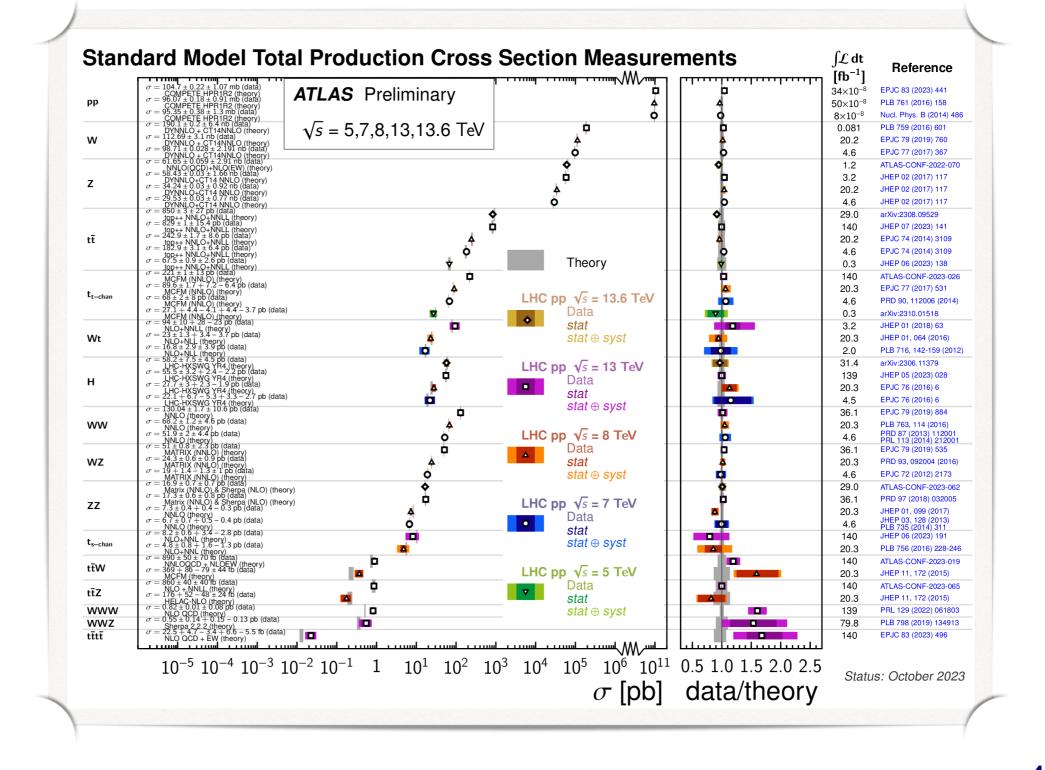
- Largest and most powerful particle accelerator in the world
- Collisions bring huge amounts of energy in a very tiny amount of space
 - E=mc²
 - produces new particles
- Try to understand matter at smallest scales
- Discovery of the Higgs
 boson in 2012

Success of the LHC

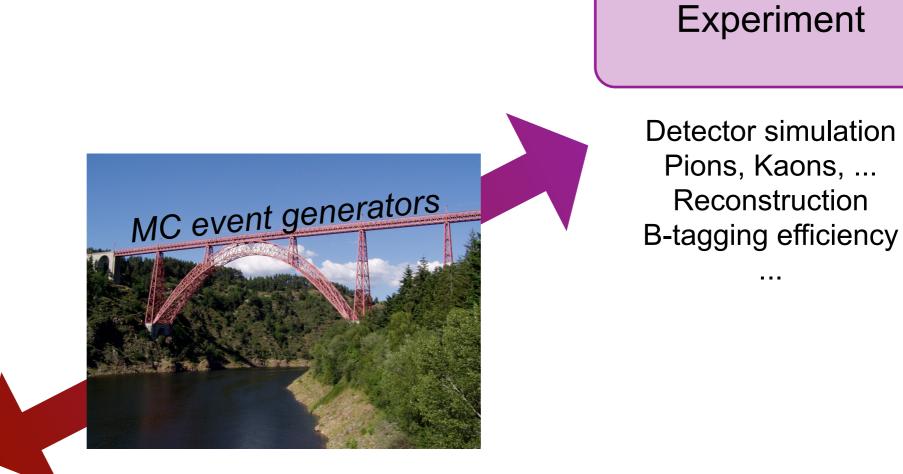
- Searches for New Physics are relying more and more upon high-precision comparisons between theory and data
 - Large data samples, methods to reduce systematics
 - High precision computations
- We are scrutinising the Standard Model at higher and higher precision and in smaller and smaller corners of the phasespace
 - The ultimate stress-test for our predictions

Excellent agreement

- Excellent agreement between computed and measured cross sections
- for all accessible processes
- over many orders of magnitude



Bridging the gap



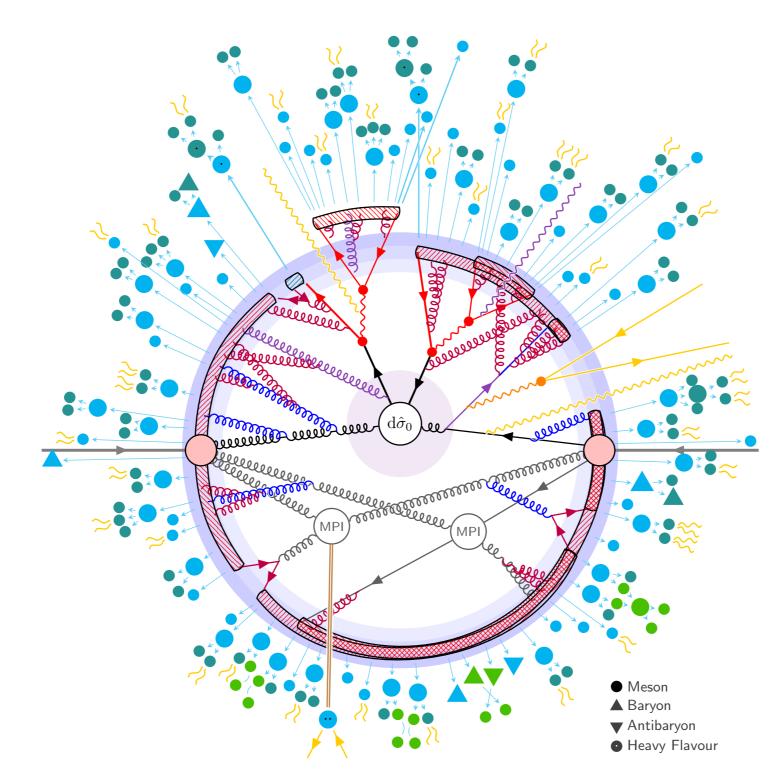
Lagrangian **Gauge Invariance** Partons **Fixed Order Corrections** Resummation

. . .

Theory

. . .

An LHC collision: phenomenological picture

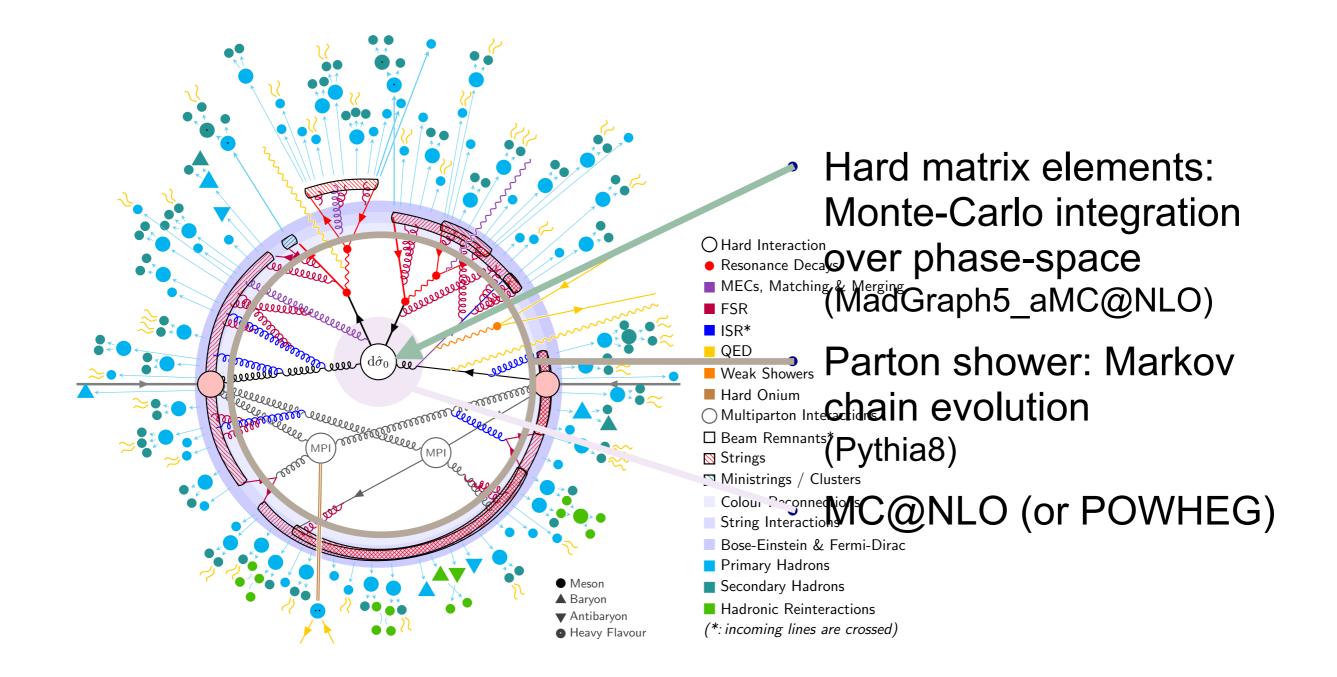


- O Hard Interaction
- Resonance Decays
- MECs, Matching & Merging
- FSR
- ISR*
- QED
- Weak Showers
- Hard Onium
- O Multiparton Interactions
- Beam Remnants*
- 🔯 Strings
- ☑ Ministrings / Clusters
- Colour Reconnections
- String Interactions
- Bose-Einstein & Fermi-Dirac
- Primary Hadrons
- Secondary Hadrons
- Hadronic Reinteractions
- (*: incoming lines are crossed)

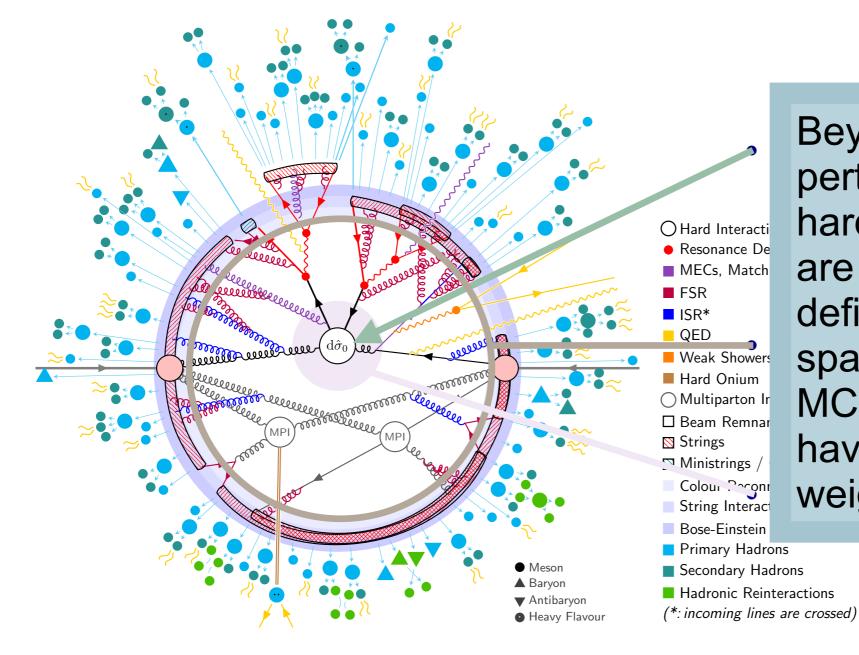
This talk

- Is not about the greatness of these simulation codes
- Is not a grant overview of their features
- It is about a little thing that soaked up an enormous amount of my time over last 5 years or so
 - ...negatively weighted events...

Matching hard ME with PS



Matching hard ME with PS



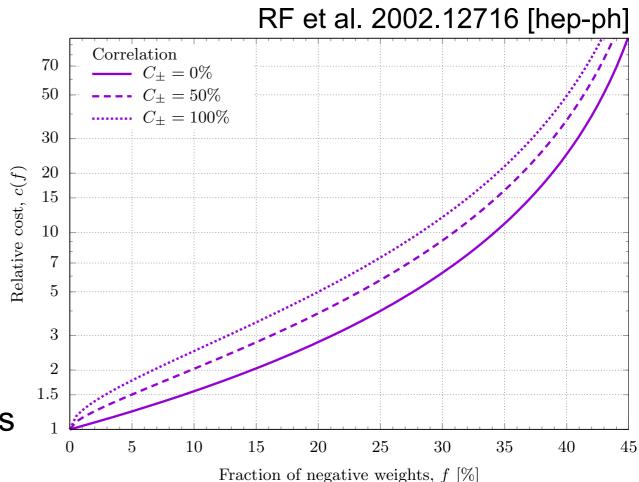
Beyond lowest order in perturbation theory, the hard matrix elements are no longer positive definite in all phasespace points. MC@NLO predictions have "negatively weighted" events

The cost of negative weights

- Main disadvantage of MC@NLO is the (large) fraction of negatively weighted events
 - IR-safe observables will be positive in all bins (up to statistical fluctuations)
- Efficiency and relative cost:

$$\varepsilon(f) = 1 - 2f$$
$$c(f) = \frac{1 + C_{\pm}\sqrt{1 - \varepsilon(f)^2}}{\varepsilon(f)^2}$$

 Not only is there a cancelation between negative and positive events, the remaining distributions still have the statistical uncertainties of the original (larger) event files



MC@NLO anatomy

Generating functional for MC@NLO

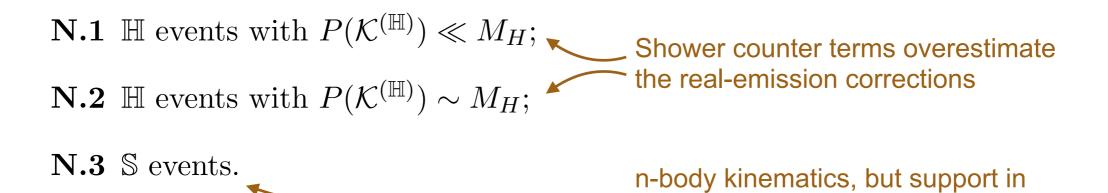
$$\mathcal{F}_{MC@NLO} = \mathcal{F}_{MC} \left(\mathcal{K}^{(\mathbb{H})} \right) d\sigma^{(\mathbb{H})} + \mathcal{F}_{MC} \left(\mathcal{K}^{(\mathbb{S})} \right) d\sigma^{(\mathbb{S})}$$
MC (Shower) functional, starting from (n+1)-body kinematics
With
H-events: $d\sigma^{(\mathbb{H})} = d\sigma^{(NLO,E)} - d\sigma^{(MC)}$,
S-events: $d\sigma^{(\mathbb{S})} = d\sigma^{(MC)} + \sum_{\alpha = S,C,SC} d\sigma^{(NLO,\alpha)}$
Born, virtual, soft/collinear

MC@NLO origins of negative weights

$$\begin{aligned} \mathcal{F}_{\mathrm{MC@NLO}} &= \mathcal{F}_{\mathrm{MC}} \Big(\mathcal{K}^{(\mathbb{H})} \Big) \, d\sigma^{(\mathbb{H})} + \mathcal{F}_{\mathrm{MC}} \Big(\mathcal{K}^{(\mathbb{S})} \Big) \, d\sigma^{(\mathbb{S})} \\ d\sigma^{(\mathbb{H})} &= d\sigma^{(\mathrm{NLO}, E)} - d\sigma^{(\mathrm{MC})} \,, \\ d\sigma^{(\mathbb{S})} &= d\sigma^{(\mathrm{MC})} + \sum_{\alpha = S, C, SC} d\sigma^{(\mathrm{NLO}, \alpha)} \end{aligned}$$

n+1-body phase space

Three sources of negative weights (with some overlap in the first two)



Folding

S-events's support in n+1-body phase space

$$d\sigma^{(\mathbb{S})} = d\sigma^{(\mathrm{MC})} + \sum_{\alpha=S,C,SC} d\sigma^{(\mathrm{NLO},\alpha)}$$
$$d\sigma^{(\mathrm{MC})}(\Phi_B) = \int d\Phi_r K^{(\mathrm{MC})}(\Phi_B, \Phi_r)$$
$$d\sigma^{(\mathrm{NLO},\alpha)}(\Phi_B) = \alpha^{(\mathrm{NLO})}(\Phi_B)$$

- Monte-Carlo integration:
 - generate a random phase-space point in Φ_B
 - for a given Φ_B , generate a random point in Φ_r
- Since $K^{\rm (MC)}$ and $\alpha^{\rm (NLO)}$ are non-positive definite, negative events arise

Folding

$$d\sigma^{(\mathbb{S})} = d\sigma^{(\mathrm{MC})} + \sum_{\alpha=S,C,SC} d\sigma^{(\mathrm{NLO},\alpha)}$$
$$d\sigma^{(\mathrm{MC})}(\Phi_B) = \int d\Phi_r K^{(\mathrm{MC})}(\Phi_B, \Phi_r)$$
$$d\sigma^{(\mathrm{NLO},\alpha)}(\Phi_B) = \alpha^{(\mathrm{NLO})}(\Phi_B)$$

• Folding: for every Φ_B phase-space point, throw multiple Φ_r points

- This smoothens the $K^{(MC)}$ contribution, reducing the number of negative weights
- Φ_r contains 3 integration variables
- Developed in the context of the POWHEG BOX generator P. Nason, arXiv:0709.2085
- Reduction significant, but at a considerable computational cost

	step-0 (s) (grid setup)	step-1 (s) (integration)	step-2 (s) (generation)	negative S weights
$pp \rightarrow e^+e^-$				
default	1	14	147	7.1%
$2 \times 2 \times 1$ folding	1	33	258	2.1%
$4 \times 4 \times 1$ folding	1	114	781	1.8%
$pp \rightarrow H$				
default	1	121	187	10.6%
$2 \times 2 \times 1$ folding	1	115	399	2.7%
$4 \times 4 \times 1$ folding	1	228	1190	0.6%
$pp \rightarrow t\bar{t}$				
default	2	132	455	8.6%
$2 \times 2 \times 1$ folding	2	262	1005	2.2%
$4 \times 4 \times 1$ folding	2	1092	3189	1.2%
$pp \to W^+ t\bar{t}$				
default	5	346	1511	4.2%
$2 \times 2 \times 1$ folding	$\frac{1}{2}$	661	2938	2.2%
$4 \times 4 \times 1$ folding	2	2605	10020	1.7%
$pp \to W^+ j$				
default	10	604	2013	24.2%
$2 \times 2 \times 1$ folding	10	1265	5160	13.2%
$4 \times 4 \times 1$ folding	7	2803	16020	9.0%
$pp \rightarrow H b \bar{b}$				
default	77	1311	19440	27.3%
$2 \times 2 \times 1$ folding	39	4320	16380	27.3% 22.4%
$4 \times 4 \times 1$ folding	48	17220	34260	22.470 20.9%

Born spreading —alternative to folding

Born spreading

- All contributions in $d\sigma^{(\mathbb{S})}$ now contain the integral of Φ_r
- Spreading function $F(\Phi_r)$ can be any arbitrary function
 - For simplicity, take it independent from (i.e., integrated over) Φ_B , i.e., we assume that the negatively weighted events are correlated strongly with the Φ_r dependence
 - Simple choice: since Born contribution is always positive we can
 - take $F(\Phi_r)$ to be zero where the rest of the contribution is already positive
 - and positive where the rest of the event is negative

Born spreading vs. Folding

- Define $F(\Phi_r)$ by filling a 3D (or 2D) grid, since it is integrated over Φ_B
- Significant reduction of negative weights
 - (albeit not as strong as folding)
- at a very modest computational cost
- Current setup not optimised: BSc student working on a more optimal $F(\Phi_r)$

	step-0 (s) (grid setup)	step-1 (s) (integration)	step-2 (s) (generation)	negative S weights
$pp \rightarrow e^+ e^-$				
default	1	14	147	7.1%
$2 \times 2 \times 1$ folding	1	33	258	2.1%
$4 \times 4 \times 1$ folding	1	114	781	1.8%
Born spreading	113	30	189	2.0%
$pp \to H$				
default	1	121	187	10.6%
$2 \times 2 \times 1$ folding	1	115	399	2.7%
$4 \times 4 \times 1$ folding	1	228	1190	0.6%
Born spreading	82	122	203	1.1%
$pp \rightarrow t\bar{t}$				
default	2	132	455	8.6%
$2 \times 2 \times 1$ folding	2	262	1005	2.2%
$4 \times 4 \times 1$ folding	2	1092	3189	1.2%
Born spreading	199	137	448	2.1%
$pp \to W^+ t\bar{t}$				
default	5	346	1511	4.2%
$2 \times 2 \times 1$ folding	2	661	2938	2.2%
$4 \times 4 \times 1$ folding	2	2605	10020	1.7%
Born spreading	202	741	2138	2.6%
$pp \to W^+ j$				
default	10	604	2013	24.2%
$2 \times 2 \times 1$ folding	10	1265	5160	13.2%
$4 \times 4 \times 1$ folding	7	2803	16020	9.0%
Born spreading	355	645	2226	18.8%
$pp \rightarrow Hb\bar{b}$				
default	77	1311	19440	27.3%
$2 \times 2 \times 1$ folding	39	4320	16380	22.4%
$4 \times 4 \times 1$ folding	48	17220	34260	20.9%
Born spreading	578	1263	20760	24.7%

Recap

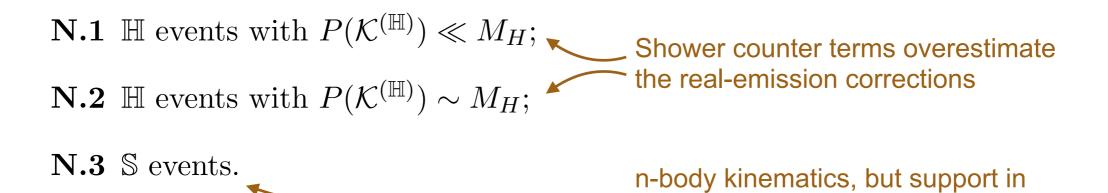
- A source of negative weights in an MC@NLO computation is from the S-events
- It is an contribution differential in the n-body (Born) phase-space, but with support in the (n+1)-body phase-space
- Folding smoothens the integral over the additional radiative phase-space by trowing more points for the latter for a given n-body phase-space point
- **Born Spreading** moves the Born contribution into the (n+1)-body phasespace, and most strongly where the latter is negative. Since the Born contribution is always positive, it reduces the negative contributions
- Both the original and these new methods yield strictly identical results (within statistical fluctuations), although with a reduction of negative weights

MC@NLO origins of negative weights

$$\begin{aligned} \mathcal{F}_{\mathrm{MC@NLO}} &= \mathcal{F}_{\mathrm{MC}} \Big(\mathcal{K}^{(\mathbb{H})} \Big) \, d\sigma^{(\mathbb{H})} + \mathcal{F}_{\mathrm{MC}} \Big(\mathcal{K}^{(\mathbb{S})} \Big) \, d\sigma^{(\mathbb{S})} \\ d\sigma^{(\mathbb{H})} &= d\sigma^{(\mathrm{NLO}, E)} - d\sigma^{(\mathrm{MC})} \,, \\ d\sigma^{(\mathbb{S})} &= d\sigma^{(\mathrm{MC})} + \sum_{\alpha = S, C, SC} d\sigma^{(\mathrm{NLO}, \alpha)} \end{aligned}$$

n+1-body phase space

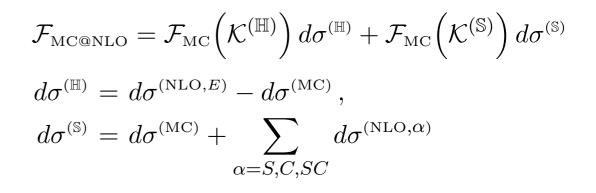
Three sources of negative weights (with some overlap in the first two)



Type N.2

N.1 \mathbb{H} events with $P(\mathcal{K}^{(\mathbb{H})}) \ll M_H;$ **N.2** \mathbb{H} events with $P(\mathcal{K}^{(\mathbb{H})}) \sim M_H;$

N.3 \mathbb{S} events.



- Reduction of negative events of type N.2
 - The shower is radiating into the hard region; fine for LO, but at NLO one emission is explicitly included through realemission matrix elements

 \Rightarrow prefer smaller shower starting scales

 $MC(a)NLO-\Delta$

- **N.1** \mathbb{H} events with $P(\mathcal{K}^{(\mathbb{H})}) \ll M_H$;
- **N.2** \mathbb{H} events with $P(\mathcal{K}^{(\mathbb{H})}) \sim M_H$;

N.3 \mathbb{S} events.

$$\begin{aligned} \mathcal{F}_{\mathrm{MC@NLO}} &= \mathcal{F}_{\mathrm{MC}} \left(\mathcal{K}^{(\mathbb{H})} \right) d\sigma^{(\mathbb{H})} + \mathcal{F}_{\mathrm{MC}} \left(\mathcal{K}^{(\mathbb{S})} \right) d\sigma^{(\mathbb{S})} \\ d\sigma^{(\mathbb{H})} &= d\sigma^{(\mathrm{NLO}, E)} - d\sigma^{(\mathrm{MC})} , \\ d\sigma^{(\mathbb{S})} &= d\sigma^{(\mathrm{MC})} + \sum_{\alpha = S, C, SC} d\sigma^{(\mathrm{NLO}, \alpha)} \end{aligned}$$

- Reduction of negative events of type N.1
 - Modify the MC@NLO procedure:

$$\mathcal{F}_{\mathrm{MC@NLO-\Delta}} = \mathcal{F}_{\mathrm{MC}} \left(\mathcal{K}^{(\mathbb{H})} \right) d\sigma^{(\Delta,\mathbb{H})} + \mathcal{F}_{\mathrm{MC}} \left(\mathcal{K}^{(\mathbb{S})} \right) d\sigma^{(\Delta,\mathbb{S})}$$
$$d\sigma^{(\Delta,\mathbb{H})} = \left(d\sigma^{(\mathrm{NLO},E)} - d\sigma^{(\mathrm{MC})} \right) \Delta,$$
$$d\sigma^{(\Delta,\mathbb{S})} = d\sigma^{(\mathrm{MC})} \Delta + \sum_{\alpha=S,C,SC} d\sigma^{(\mathrm{NLO},\alpha)} + d\sigma^{(\mathrm{NLO},E)} \left(1 - \Delta \right)$$

 Δ dampens the contribution from the H-events in the soft/collinear region, and adds it the S-event contribution. The idea: the shower will do a good job to re-fill the phase-space

• with

 $\Delta \longrightarrow 0$ in the soft/collinear limits

 $\Delta \longrightarrow 1$ in the hard regions

 \Rightarrow use shower no-emission probability (between hard scale and scale of the emission)

NLO accuracy

- The formal expansion of the no-emission probability is $\Delta = 1 + \mathcal{O}(\alpha_S)$
- Furthermore, in the soft/collinear limits the logarithms are similar to the ones that are generated by the shower

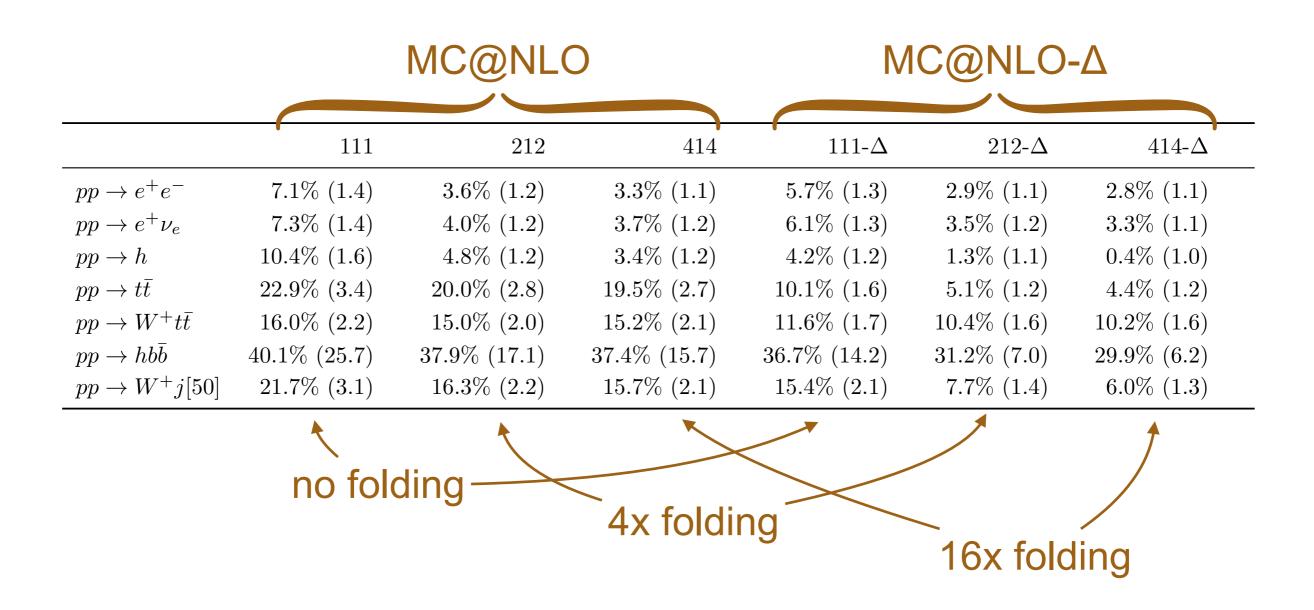
 \Rightarrow From this one can conclude that accuracy is the same as with the default MC@NLO method

 However, beyond NLO contributions can be very much different: MC@NLO-Δ is effectively a new matching procedure
 i.e., results will NOT be identical between the original and new predictions

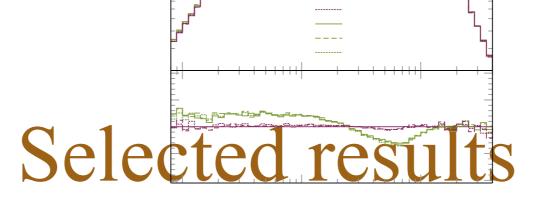
Implementation

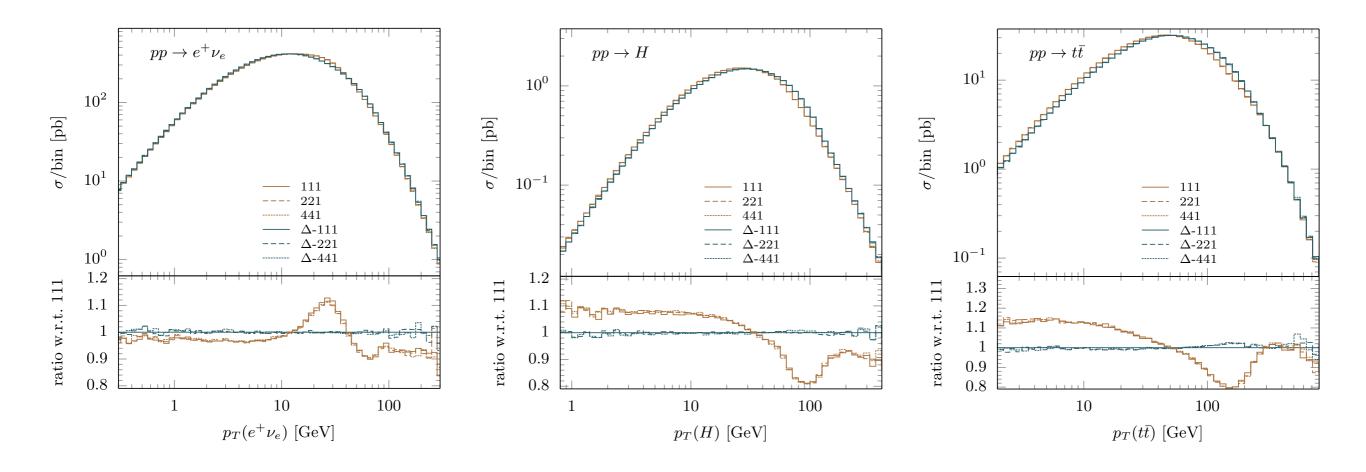
- Run-time interface between MG5_aMC and Pythia8
 - MG5_aMC generates phase-space points, all the relevant matrix elements and MC counter terms
 - It calls Pythia8 to determine the relevant emission scales for each dipole in the S-events to obtain the H-event
 - For fast evaluation, the Pythia8 Sudakov factors have been tabulated (2D grids (dipole mass and scale); one for each parton flavour; one for each dipole type (II, IF, FI, FF))
 - No emission probabilities included by MG5_aMC
- Major complication:
 - emission scale is different for each dipole
 - when showering events requires a different starting scale for each dipole

Reduction of negative weights



Fraction of negative weights and relative cost (assuming no correlations)





- Transverse momentum of the Born system
- Differences between default and Δ are sizeable, but reasonable
- Folding has no effect (apart from increased statistics), as it should be

8 years of development...

- First ideas discussed in 2015 together with Stefano Frixione, Stefan Prestel, Paolo Torrielli
- Serious work started in 2017
- Published MC@NLO- Δ in 2002.12716 [hep-ph], but code did not go public
 - After publication, we found
 - some bugs...
 - a better treatment of events that are in the dead zone
 - some improvements in the shower scale assignments
 - compatibility with Pythia8.3 (thanks to Leif Gellersen and Christian Preuss!)
- Code public: 2023

Summary

- Comparisons between LHC data and predictions show excellent agreement
 - The tools are optimised, but there are always improvements possible
- One major drawback of combining higher-order Matrix Element computations with Parton Showers are the event-by-event negative weight contributions that only cancel in (IR-safe) observables
- MC@NLO-Δ reduces the number of negative weights by a significant amount
 - New matching procedure; results differ from default MC@NLO—within the matching systematics
 - Run-time interface between MG5_aMC and Pythia8
 - With Δ enabled, CPU time to generate events increases by a factor ~3
 - 4x folding increases the run time also by a factor ~3
 - 16x folding about a factor ~3²

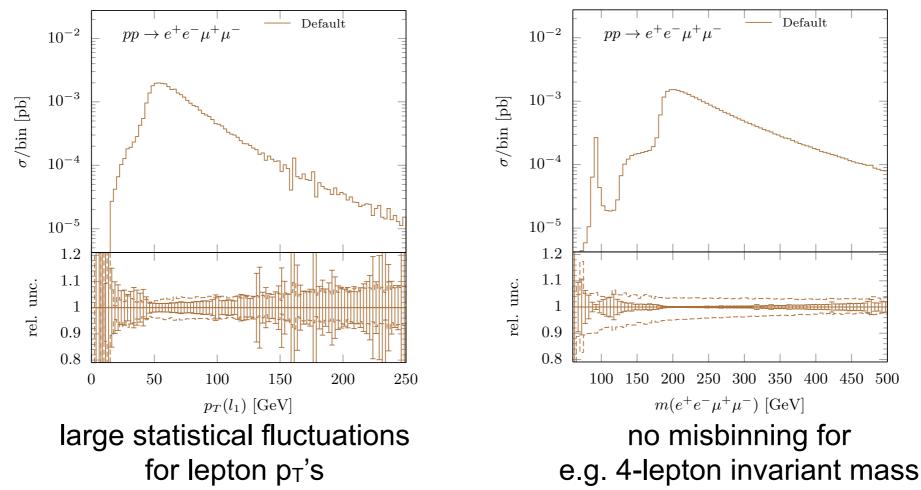
 \Rightarrow reduction of negative weights due to Δ and folding typically not worth it from a CPU point of view, except when there is more overhead than simply showering the events (detector simulation, storage space, etc.)

• but with Born Spreading it probably is! (spreading needs to be further optimised, though)

BONUS: Reducing statistical fluctuations at Fixed Order

Statistical fluctuations at fixed order

- A major source of statistical fluctuations in fixed order differential distributions are the 'misbinning' effects
 - At NLO: the real-emission and IR-subtraction terms can end up in different bins
 - This depends on the mapping between the n and (n+1)-body phasespace



Δ for Fixed order

• NLO diff. cross section (schematically)

$$\frac{d\sigma^{\text{NLO}}}{d\mathcal{O}} = \int (B + V + I)\mathcal{O}(\Phi_n) d\Phi_n$$
$$+ \int (R\mathcal{O}(\Phi_{n+1}) - S\mathcal{O}(\Phi_n)) d\Phi_{n+1}$$

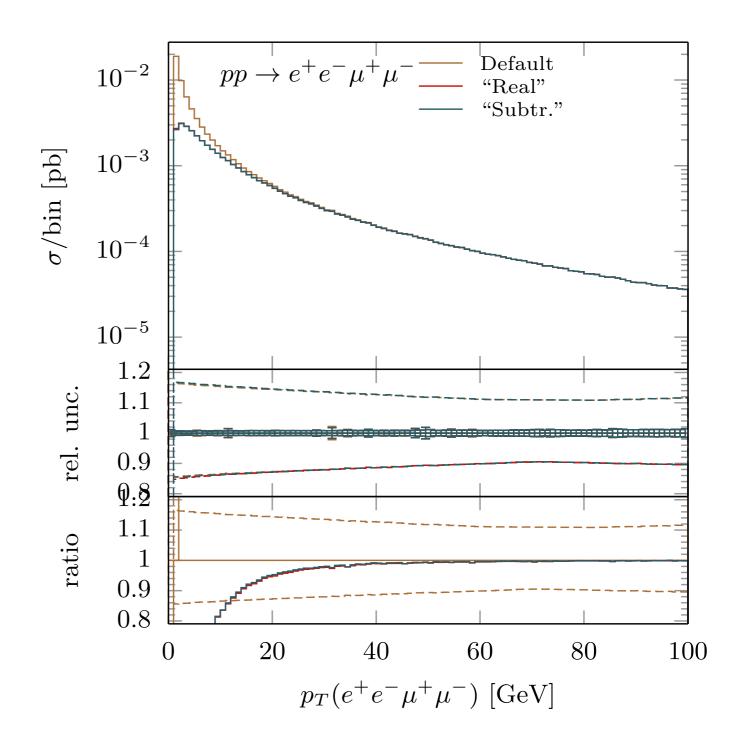
• Introduce Δ factor:

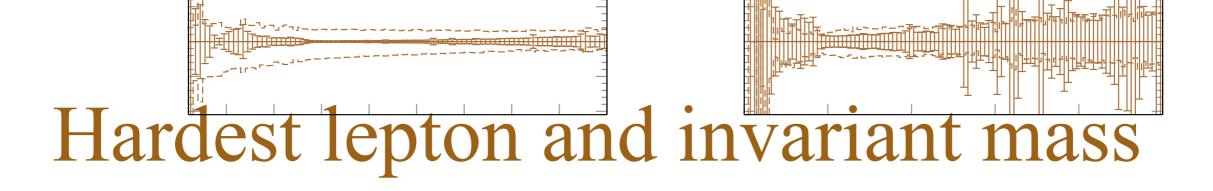
- Δ does not need to be the Pythia8 no-emission probability: it can be a simple LL Sudakov factor between the hard scale and the scale of the emission

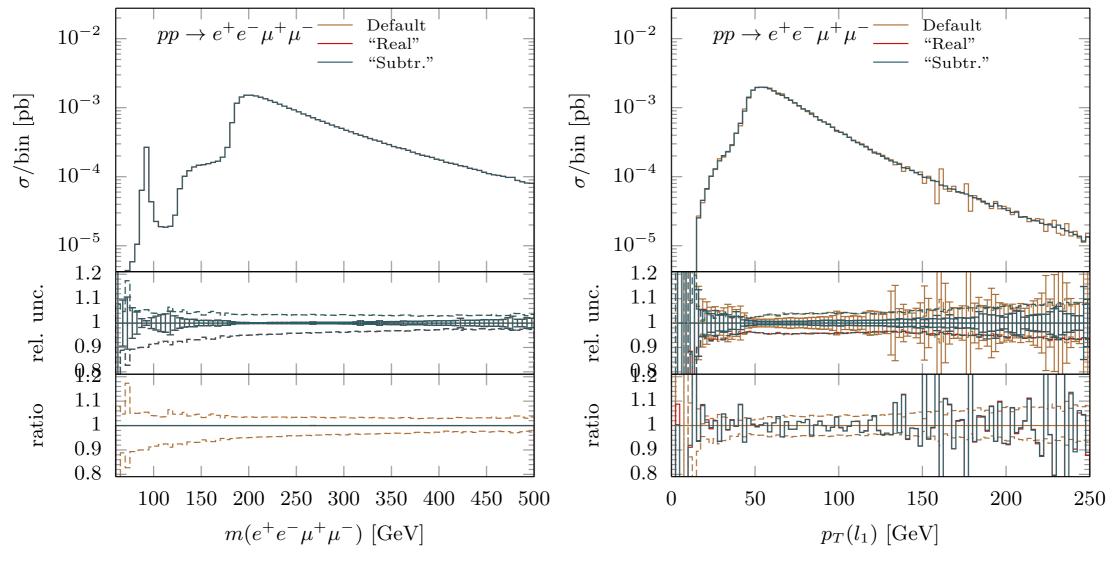
 \Rightarrow NLO accuracy is conserved

p_T(4lepton)

- Same random seed: exactly the same PS points
- Inclusion of Δ changes the 4-lepton spectrum at small transverse momenta
- However, this is the region where you cannot trust FO perturbation theory
- Two versions (including Δ for real and subtraction, respectively) give identical results

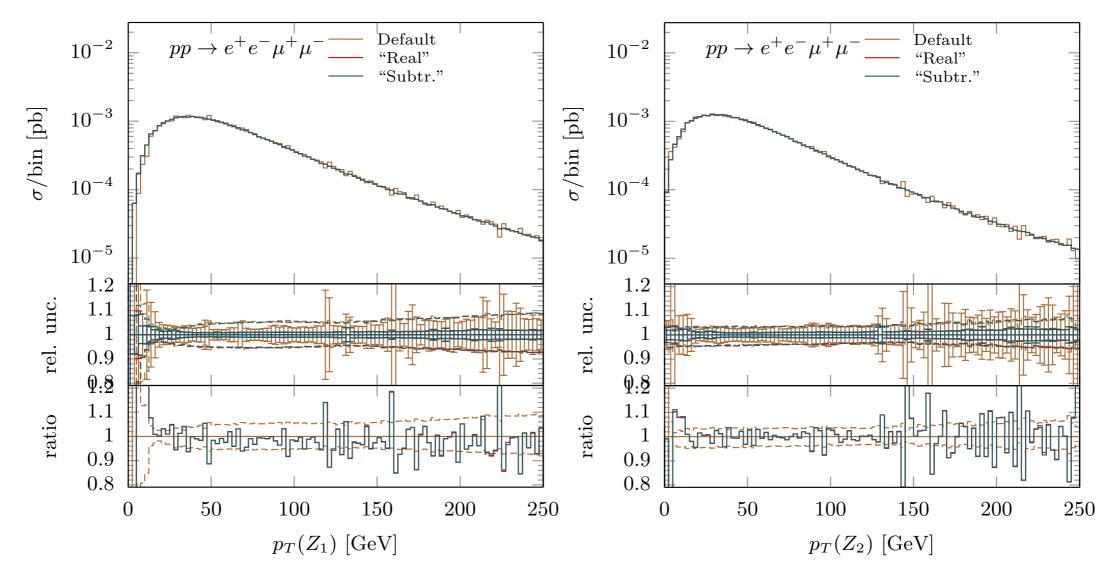






- Of course, no effect in 4-lepton invariant mass
- Significant reduction of statistical fluctuations in p_T(I₁); compatible with the default

Z-bosons (ordered in p_T)



- Again, large reduction in statistical fluctuations
- Compatible within scale uncertainties; expect at low p_T(Z), where FO perturbation theory cannot be trusted

Summary: BONUS

- Adding Δ is a simple improvement to fixed order computations that can significantly reduce statistical fluctuations in diff. distributions
- Inclusive rates are not affected
 Observables conserved in the mapping are not affected
- Other observables see some changes, but only when sensitive to IR region, where fixed order perturbation theory does not work
 Statistical fluctuations reduced by factor ~2-3 at no additional cost.

Severe misbinning is gone

• Worth investigating for other processes and at NNLO